
Resilient applications using 
MPI-level constructs

SC’16 Fault Tolerant MPI Tutorial



Getting the latest examples
• Slides:http://fault-tolerance.org/fault-tolerance-

tutorial/sc16-tutorial/
• Examples: http://fault-

tolerance.org/downloads/tutorial-sc16.tgz
• mpirun -np 8 -am ft-enable-mpi ./my-app

• Run with ULFM-1.1 (or better) http://fault-
tolerance.org/2015/11/14/ulfm-1-1-release/

• Docker Image for ULFM 1.1
http://fault-tolerance.org/downloads/docker-
ftmpi.sc16tutorial.tar.xz
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Backward recovery: C/R

• Coordinated checkpoint is the workhorse of FT today
• I/O intensive, significant failure free overhead L
• Full rollback (1 fails, all rollback) L
• Can be deployed w/o MPI support J

• ULFM enables user-level deployment of in-memory, 
Buddy-checkpoints, Diskless checkpoint
• Checkpoints stored on other compute nodes
• No I/O activity (or greatly reduced), full network bandwidth
• Potential for a large reduction in failure free overhead, better restart speed
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Coordinated checkpoint (possibly with incremental checkpoints)



Uncoordinated C/R

• Checkpoints taken independently
• Based on variants of Message Logging
• 1 fails, 1 rollback
• Can be implemented w/o a standardized user API
• Benefit from ULFM: implementation becomes portable 

across multiple MPI libraries
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Forward Recovery
• Forward Recovery: Any technique that 

permit the application to continue without 
rollback
• Master-Worker with simple resubmission
• Iterative methods, Naturally fault  tolerant algorithms
• Algorithm Based Fault Tolerance
• Replication (the only system level Forward Recovery)

• No checkpoint I/O overhead
• No rollback, no loss of completed work
• May require (sometime expensive, like 

replicates) protection/recovery 
operations, but still generally more 
scalable than checkpoint J

• Often requires in-depths algorithm 
rewrite (in contrast to automatic 
system based C/R) L
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Application specific forward recovery

• Algorithm specific FT 
methods
• Not General, but…
• Very scalable, low overhead J
• Can’t be deployed w/o a fault 

tolerant MPI
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Fig. 11. Weak scalability of FT-QR: run time overhead on Kraken when failures strike

local snapshots have to be used along with re-factorization to recover the lost data and
restore the matrix state. This is referred to as the ”failure within Q panels.”

Figure 10 shows the overhead from these two cases for the LU factorization, along
with the no-error overhead as a reference. In the “border” case, the failure is simulated
to strike when the 96th panel (which is a multiple of grid columns, 6, 12, · · · , 48) has just
finished. In the “non-border” case, failure occurs during the (Q + 2)th panel factoriza-
tion. For example, when Q = 12, the failure is injected when the trailing update for the
step with panel (1301,1301) finishes. From the result in Figure 10, the recovery pro-
cedure in both cases adds a small overhead that also decreases when scaled to large
problem size and process grid. For largest setups, only 2-3 percent of the execution
time is spent recovering from a failure.

7.4. Extension to Other factorization
The algorithm proposed in this work can be applied to a wide range of dense matrix
factorizations other than LU. As a demonstration we have extended the fault toler-
ance functions to the ScaLAPACK QR factorization in double precision. Since QR uses
a block algorithm similar to LU (and also similar to Cholesky), the integration of fault
tolerance functions is mostly straightforward. Figure 11 shows the performance of QR
with and without recovery. The overhead drops as the problem and grid size increase,
although it remains higher than that of LU for the same problem size. This is expected:
as the QR algorithm has a higher complexity than LU ( 43N

3 v.s. 2
3N

3), the ABFT ap-
proach incurs more extra computation when updating checksums. Similar to the LU
result, recovery adds an extra 2% overhead. At size 160,000 a failure incurs about
5.7% penalty to be recovered. This overhead becomes lower, the larger the problem or
processor grid size considered.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: January 2013.
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An API for diverse FT approaches 
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User Level Failure Mitigation: a set of MPI interface extensions to 
enable MPI programs to restore MPI communication capabilities 
disabled by failures
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(a) failure-free (b) few failures (c) many failures

Figure 5. Results of the FT-MLMC implementation for three different failure scenarios.

In Fig. 5 we show three different results, the mean of the density ⇢ at t = 0.06s,
obtained by FT-MLMC. The result in Fig. 5(a) is computed failure-free. In Fig. 5(b) a
result is shown where 3 out of 46 processes where killed. Figure 5(c) shows the result of
a FT-MLMC run where 9 out of 46 processes where killed, among them both processes
dealing with levels 2, such that all samples of this level are missing. The deterioration of
the result is obvious.

In Fig. 6 several quantities of the FT-MLMC method for different MTBFs are pre-
sented. They are discussed in the next section. Figure 6(a) presents two measurements
for the “intermediate save” strategy. (The results for the “late save” strategy are similar.)
First, we show the percentage of processes failed during the computation. Second, the “at
least a failure” probability is shown which measures the fraction of FT-MLMC runs that
experience at least one failure. (All other FT-MLMC runs are failure-free.) Remember
that standard MPI crashes if a failure occurs.

The measurement of the FT-MLMC error versus MTBF is shown in Fig. 6(b). The
error of the failure-free ALSVID-UQ is shown at MTBF = 2 ·104 s, where the fault
tolerant strategies (“intermediate save” and “late save”) are of the same quality. For
MTBF > 200 s the error remains rather constant. This can be seen for MTBF < 200 s
where the error slightly grows. It explodes at MTBF < 40 s for the “late save” strategy,
and at MTBF < 20 s for the “intermediate save” strategy.

Figure 6(c) shows the measured wall-clock run-time for the two fault tolerant strate-
gies and the failure-free run. Between the two fault tolerant versions no significant dif-
ference is measured. At MTBF = 2 ·104 s we see the small overhead (around 5%) of
both fault tolerant runs, compared to the standard failure-free ALSVID-UQ implemen-
tation. For the fault tolerant versions the run-time remains approximately constant for
MTBF > 100 s. Then the run-time decreases.

Figure 6(d) presents two measurements for the “intermediate save” strategy. (The re-
sults for the “late save” strategy are similar.) The first measurement “all samples failed”
shows how often no samples at all could be computed, since too many processes failed.
Then no FT-MLMC result is computed, such that these runs are ignored in the error com-
putation of Fig. 6(b). The same holds for runs which crashed (indicated by “program
crashed”).

Credits: ETH Zurich

• ORNL: Molecular Dynamic simulation, C/R in memory 
with Shrink

• UAB: transactional FT programming model
• Tsukuba: Phalanx Master-worker framework
• Georgia University: Wang Landau Polymer Freezing and 

Collapse, localized subdomain C/R restart
• Sandia, INRIA, Cray: PDE sparse solver
• Cray: CREST miniapps, PDE solver Schwartz, PPStee

(Mesh, automotive), HemeLB (Lattice Boltzmann)
• ETH Zurich: Monte-Carlo, on failure the global 

communicator (that contains spares) is shrunk, ranks 
reordered to recreate the same domain decomposition

• …

ULFM-based Applications

S3D - Fenix
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the result is obvious.

In Fig. 6 several quantities of the FT-MLMC method for different MTBFs are pre-
sented. They are discussed in the next section. Figure 6(a) presents two measurements
for the “intermediate save” strategy. (The results for the “late save” strategy are similar.)
First, we show the percentage of processes failed during the computation. Second, the “at
least a failure” probability is shown which measures the fraction of FT-MLMC runs that
experience at least one failure. (All other FT-MLMC runs are failure-free.) Remember
that standard MPI crashes if a failure occurs.

The measurement of the FT-MLMC error versus MTBF is shown in Fig. 6(b). The
error of the failure-free ALSVID-UQ is shown at MTBF = 2 ·104 s, where the fault
tolerant strategies (“intermediate save” and “late save”) are of the same quality. For
MTBF > 200 s the error remains rather constant. This can be seen for MTBF < 200 s
where the error slightly grows. It explodes at MTBF < 40 s for the “late save” strategy,
and at MTBF < 20 s for the “intermediate save” strategy.

Figure 6(c) shows the measured wall-clock run-time for the two fault tolerant strate-
gies and the failure-free run. Between the two fault tolerant versions no significant dif-
ference is measured. At MTBF = 2 ·104 s we see the small overhead (around 5%) of
both fault tolerant runs, compared to the standard failure-free ALSVID-UQ implemen-
tation. For the fault tolerant versions the run-time remains approximately constant for
MTBF > 100 s. Then the run-time decreases.

Figure 6(d) presents two measurements for the “intermediate save” strategy. (The re-
sults for the “late save” strategy are similar.) The first measurement “all samples failed”
shows how often no samples at all could be computed, since too many processes failed.
Then no FT-MLMC result is computed, such that these runs are ignored in the error com-
putation of Fig. 6(b). The same holds for runs which crashed (indicated by “program
crashed”).

Credits: ETH Zurich
ULFM-based Applications

S3D - Fenix

• ORNL: Molecular Dynamic simulation, C/R in memory 
with Shrink

• UAB: transactional FT programming model
• Tsukuba: Phalanx Master-worker framework
• Georgia University: Wang Landau Polymer Freezing and 

Collapse, localized subdomain C/R restart
• Sandia, INRIA, Cray: PDE sparse solver
• Cray: CREST miniapps, PDE solver Schwartz, PPStee

(Mesh, automotive), HemeLB (Lattice Boltzmann)
• ETH Zurich: Monte-Carlo, on failure the global 

communicator (that contains spares) is shrunk, ranks 
reordered to recreate the same domain decomposition

• Programming Model Resilient X10 …



ULFM MPI API
Part rationale, part examples
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What is the status of FT in MPI today?

• Total denial
• “After an error is detected, the state of MPI is undefined. An MPI 

implementation is free to allow MPI to continue after an error but is not 
required to do so.“

• Two forms of management
• Return codes: all MPI functions return either MPI_SUCCESS 

or a specific error code related to the error class encountered 
(eg MPI_ERR_ARG)

• Error handlers: a callback automatically triggered by the MPI 
implementation before 
returning from an MPI 
function.

11



Error Handlers

• Can be attached to all objects allowing data 
transfers: communicators, windows and files

• Allow for minimalistic error recovery: the 
standard suggests only non-MPI related actions

• All newly created MPI objects inherit the error 
handler from their parent
• A global error handler can be specified by associating an error handler to 

MPI_COMM_WORLD right after MPI_Init

12

typedef void MPI_Comm_errhandler_function
(MPI_Comm *, int *, ...); 



Summary of existing functions

• MPI_Comm_create_errhandler(errh, 
errhandler_fct)
• Declare an error handler with the MPI library

• MPI_Comm_set_errhandler(comm, errh)
• Attach a declared error handler to a communicator
• Newly created communicators inherits the error handler that is 

associated with their parent
• Predefined error handlers: 

• MPI_ERRORS_ARE_FATAL (default)
• MPI_ERRORS_RETURN
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Requirements for MPI standardization of FT

• Expressive, simple to use
• Support legacy code, backward compatible
• Enable users to port their code simply
• Support a variety of FT models and approaches

• Minimal (ideally zero) impact on 
failure free performance
• No global knowledge of failures
• No supplementary communications to maintain 

global state
• Realistic memory requirements

• Simple to implement
• Minimal (or zero) changes to existing functions
• Limited number of new functions
• Consider thread safety when designing the API MPI

Checkpoint
/Restart

Uniform
Collective

s
Others

Application

FAILURE_ACK | REVOKE | 
SHRINK | AGREE



Minimal Feature Set for a Resilient MPI 
• Failure Notification
• Error Propagation
• Error Recovery 

Not all recovery strategies
require all of these features,
that’s why the interface splits
notification, propagation and 
recovery.

ULFM is not a recovery strategy, but a minimalistic set of 
building blocks for implementing complex recovery 
strategies. 

Minimal Feature Set for FT MPI 
•  Failure Notification 
• Error Propagation 
• Error Recovery 

Not all recovery strategies  
require all of these features,  
that’s why the interface splits  
notification, propagation and recovery. 
ULFM is not a recovery strategy, but a minimalistic 
set of building blocks for more complex recovery 
strategies. 
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Failure Notification
• MPI stands for scalable parallel applications it would be 

unreasonable to expect full connectivity between all 
peers

• The failure detection and notification
should have a neighboring scope: 
only processes involved in a 
communication with the failed process
might detect the failure

• But at least one neighbor should be informed about a 
failure

• MPI_Comm_free must free “broken” communicators 
and MPI_Finalize must complete despite failures.

16



Error Propagation

• What is the scope of a failure? Who should be 
notified about?

• ULFM approach: offer flexibility to allow the 
library/application to design the scope of a 
failure, and to limit the scope of a failure to 
only the needed participants
• eg. What is the difference between a Master/Worker

and a tightly coupled application ?
• In a 2d mesh application how many nodes

should be informed about a failure?

17



Error Recovery

• What is the right recovery strategy?
• Keep going with the remaining processes?
• Shrink the living processes to form a new 

consistent communicator?
• Spawn new processes to take the place of the 

failed ones?
• Who should be in charge of defining this 

survival strategy? What would be the 
application feedback?
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Integration with existing mechanisms

• New error codes to deal with failures
• MPI_ERROR_PROC_FAILED: report that the operation discovered a newly 

dead process. Returned from all blocking function, and all completion 
functions.

• MPI_ERROR_PROC_FAILED_PENDING: report that a non-blocking 
MPI_ANY_SOURCE potential sender has been discovered dead.

• MPI_ERROR_REVOKED: a communicator has been declared improper for 
further communications. All future communications on this communicator 
will raise the same error code, with the exception of a handful of recovery 
functions

• Is that all?
• Matching order (MPI_ANY_SOURCE), collective communications

19



Summary of new functions
• MPI_Comm_failure_ack(comm)

• Resumes matching for MPI_ANY_SOURCE 

• MPI_Comm_failure_get_acked(comm, &group)
• Returns to the user the group of processes acknowledged to have failed 

• MPI_Comm_revoke(comm)
– Non-collective collective, interrupts all operations on comm

(future or active, at all ranks) by raising MPI_ERR_REVOKED 

• MPI_Comm_shrink(comm, &newcomm) 
– Collective, creates a new communicator without failed 

processes (identical at all ranks) 
• MPI_Comm_agree(comm, &mask)

– Collective, agrees on the AND value on binary mask, 
ignoring failed processes (reliable AllReduce), and the 
return core

N
otification

Propagation
Recovery



MPI_Comm_failure_ack
• Local operations that acknowledge all locally 

notified failures
• Updates the group returned by MPI_COMM_FAILURE_GET_ACKED

• Unmatched MPI_ANY_SOURCE that would have 
raised MPI_ERR_PROC_FAILED_PENDING proceed 
without further exceptions regarding the 
acknowledged failures.

• MPI_COMM_AGREE do not raise 
MPI_ERR_PROC_FAILED due to acknowledged 
failures
• No impact on other MPI calls especially not on collective communications

21



MPI_Comm_failure_get_acked

• Local operation returning the group of failed 
processes in the associated communicator that 
have been locally acknowledged

• Hint: All calls to MPI_Comm_failure_get_acked
between a set of MPI_Comm_failure_ack
return the same set of failed processes

22



Failure Discovery
• Discovery of failures is local (different processes 

may know of different failures)
• MPI_COMM_FAILURE_ACK(comm)

• This local operation gives the users a way to acknowledge all locally notified 
failures on comm. After the call, unmatched MPI_ANY_SOURCE receive 
operations proceed without further raising MPI_ERR_PROC_FAILED_PENDING 
due to those acknowledged failures. 

• MPI_COMM_FAILURE_GET_ACKED(comm, &grp)
• This local operation returns the group grp of processes, from the 

communicator comm, that have been locally acknowledged as failed by 
preceding calls to MPI_COMM_FAILURE_ACK. 

• Employing the combination ack/get_acked, a 
process can obtain the list of all failed ranks (as 
seen from its local perspective)
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MPI_Comm_revoke
• Communicator level failure propagation
• The revocation of a communicator completes all 

pending local operations
• A communicator is revoked either after a local MPI_Comm_revoke or any MPI 

call raise an exception of class MPI_ERR_REVOKED

• Unlike any other concept in MPI it is not a 
collective call but has a collective scope

• Once a communicator has been revoked all non-
local calls are considered local and must complete 
by raising MPI_ERR_REVOKED
• Notable exceptions: the recovery functions (agreement and shrink)

24



MPI_Comm_agree

• Perform a consensus between all living 
processes in the associated communicator and 
consistently return a value and an error code to 
all living processes

• Upon completion all living processes agree to 
set the output integer value to a bitwise AND 
operation over all the contributed values
• Also perform a consensus on the set of known failed processes (!)
• Failures non acknowledged by all participants keep raising 

MPI_ERR_PROC_FAILED
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MPI_Comm_shrink

• Creates a new communicator by excluding all 
known failed processes from the parent 
communicator
• It completes an agreement on the parent communicator
• Work on revoked communicators as a mean to create safe, globally 

consistent sub-communicators

• Absorbs new failures, it is not allowed to return 
MPI_ERR_PROC_FAILED or 
MPI_ERR_REVOKED
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Other mechanisms

• Supported but not covered in this tutorial: one-
sided communications and files
• Files: MPI_FILE_REVOKE
• One-sided: MPI_WIN_REVOKE, MPI_WIN_GET_FAILED

• All other communicator based mechanisms are 
supported via the underlying communicator of 
these objects.

27



ULFM MPI: Software Infrastructure
• Implementation in Open 

MPI available
• ANL working on MPICH 

implementation, close to release

• Very good performance 
w/o failures

• Optimization and 
performance 
improvements of critical 
recovery routines are 
close to release
• New revoke
• New Agreement
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Resilience Extensions for MPI: ULFM
ULFM provides targeted interfaces to empower recovery strategies with adequate options to restore 
communication capabilities and global consistency, at the necessary levels only.

Sequoia AMG is an unstructured physics mesh application with a complex 
communication pattern that employs both point-to-point and collective 
operations. Its failure free performance is unchanged whether it is deployed 
with ULFM or normal Open MPI. 

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes 
message test. The connectivity and bandwidth between rank 0 and rank 1 
are unaffected by failure handling activities at rank 2.

CONTINUE ACROSS ERRORS

In ULFM, failures do not alter the state of MPI communicators. 
Point-to-point operations can continue undisturbed between 
non-faulty processes. ULFM imposes no recovery cost on simple 
communication patterns that can proceed despite failures. 

GROUP EXCEPTIONS

Consistent reporting of failures would add an unacceptable 
performance penalty. In ULFM, errors are raised only at ranks where 
an operation is disrupted; other ranks may still complete their 
operations.  A process can use MPI_[Comm,Win,File]_revoke to 
propagate an error notification on the entire group, and could, for 
example, interrupt other ranks to join a coordinated recovery. 

COLLECTIVE OPERATIONS 

Allowing collective operations to operate on damaged MPI objects 
(Communicators, RMA windows or Files) would incur unacceptable 
overhead. The MPI_Comm_shrink routine builds a replacement 
communicator, excluding failed processes, which can be used to 
resume collective communications, spawn replacement processes, 
and rebuild RMA Windows and Files. 
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Figure 7: Detection and propagation delay, and impact on completion time of fault-tolerant agreement operation.

formance (center graph) are barely a↵ected by low frequen-
cies of heartbeat emissions. For higher frequencies, the over-
head generated by the noise can reach approximately 10%.
The bandwidth performance is less impacted overall than
the latency, especially for point-to-point bandwidth, which
remains unchanged for all but the most extreme values of ⌘.
The application performance (Linpack, right graph) exhibits
no observable performance degradation for ⌘ � 100ms. For
higher frequencies, the performance degradation remains con-
tained under 2%.

5.4 Failure Detection Time
Figure 7 presents the behavior observed when injecting

failures. The first graph (left) presents the time to reach
a stable state when injecting 1 to 8 failures for a varying
number of nodes. After synchronizing, the desired number
of MPI processes (whose ranks are chosen at random) simu-
late a failure. All other processes post an any-source recep-
tion. When the reception raises a process failure exception
(the only possible outcome for this non-matched any-source
reception), the process counts the number of locally known
failed processes, and if it does not contain all injected fail-
ures, repeats the reception. The time at which all failures
have been locally observed is reported at each rank. We
observe that for small scales, the reported delay is consis-
tently close to �. If emitters were sending heartbeats to their
observer at random starting time, we would expect the de-
tection time to be closer to ��⌘/2; however, as all processes
start to sending heartbeats to their observer at the end of
the MPI_Init function, they are almost synchronized, and
for all runs we observe a consistent delay at small scale.
At larger scale, processes leave MPI_Init at a more variable
date, and the average starts to converge toward the theoreti-
cal bound. This observation matches the model, considering
that in this scenario all failures are “simultaneous”, and that
the random allocation of failures has a low probability of
hurting observer/emitter pairs. Consequently, the detection
and propagation of each of these failures progresses con-
currently and do not su↵er from the cumulative e↵ect of
detecting multiple predecessors’ failures on the ring.

The second experiment (center in Figure 7) investigates
the e↵ect of collisions on the reliable broadcast propagation
delay. The benchmark is similar to the previous experi-
ment, except that before a process simulates a failure, it

sends its observer a special “trigger heartbeat”, which ini-
tiates an immediate propagation reporting it dead, without
waiting for the � timeout. The rest of the observation pro-
tocol remains unchanged (i.e., heartbeats are exchanged be-
tween live processes with an ⌘ period, and the observer of
the injection process switches to observing the predecessor).
We then present the increase in the average duration of the
reliable broadcast when multiple broadcasts are progress-
ing concurrently. To simplify the proof of the upper bound
on stabilization time (Theorem 1), we have considered that
successive broadcasts are totally sequential. This is an ad-
mittedly pessimistic hypothesis, and indeed, performing two
concurrent propagations does not significantly increase the
delay, as the two reliable broadcasts can actually overlap
almost completely. However, starting from 4, and, more
prominently, for 8 concurrent broadcasts, the average com-
pletion time is significantly increased. Considering the small
size of the messages, the bandwidth requirements are small,
and contention on port access is indeed the major cause of
the imperfect overlap between these concurrent broadcasts,
therefore vindicating the importance of considering a port-
limited model during the design of the failure detector and
propagation algorithms.
The last experiment (right in Figure 7) presents the per-

formance of the agreement algorithm after failures have been
injected. The authors of [14] presented a similar perfor-
mance result for their agreement algorithm. In their results,
the agreement performance was severely impacted when fail-
ure were discovered during the agreement (with the fail-
ure free performance of 80µs increasing to approximatively
80ms), an e↵ect the authors claim is due to failure detection
overhead. In their work, failure detection was delegated
to an ORTE based RAS service, responsible for detecting
and propagating failures. In this experiment, we strive to
recreate as closely as possible this setup, except that we de-
ploy our failure detector in lieu of the ORTE RAS service.
We consider the same implementation of the agreement,
on 6,000 Titan cores (the same number of cores they de-
ployed on the generally similar Cray XC30 Darter system).
Some in-band detection capabilities are active, in particular,
failure of shared-memory sibling ranks are reported by the
node’s local operating system. With the replacement of the
ORTE RAS service by our failure detector algorithm, the
time to completion of the agreement algorithm decreases to

vided that no more than k � 1 crashes strike during its ex-
ecution. The time for one complete broadcast algorithm in
Algorithm 1 would then be (upper bounded by) 4⌧ log n in
the absence of any other messages, since we use two HBA
calls in sequence. But our algorithm also requires heart-
beats to be sent along the ring, as well as NewObserver
messages when ring reconnection is needed. Assuming that
⌘ � 3⌧ (where ⌘ is the heartbeat period), we can always in-
sert broadcast and NewObserver messages in between two
successive heartbeats, thereby guaranteeing that a broadcast
in Algorithm 1 will always execute within B(n) = 8⌧ log n,
assuming no new failure interrupts the broadcast operation.

3.1.3 Stable Configuration and Stabilization Time
Here we consider executions that, from the initial con-

figuration, reached a steady state before a failure hit the
system and made it leave that steady state. To prove the
correctness of our algorithm, we show that in a given time,
the system returns to a steady state, assuming that no more
than a bounded number of failures strike during this time.

Connected Node A node p is connected with its successor
in a configuration, if p is alive and emitterp is the closest
predecessor of p that is alive (on the ring). It is connected
with its predecessor if it is alive, and observerp is the clos-
est successor of p that is alive in that configuration. It is
reconnected if it is connected with both its successor and
predecessor. If all processors are reconnected, we say the
ring is reconnected.

Stable Configuration A configuration C is the global state
of all processes plus the status of the network. A configura-
tion is declared as stable, if any alive node p is reconnected
in C and for any node q, q 2 Dp () q is dead in C.

Stabilization Time T (f), with f being the number of over-
lapping failures, is the duration of the longest sequence of
non stable configurations during any execution, assuming at
most f failures during the sequence.

3.2 Correctness and Performance Analysis
The main result is the following proof of correctness, that

provides a deterministic upper bound on the Stabilization
Time T (f) of the algorithm with at most f overlapping
faults:

Theorem 1. With n  N alive nodes, and for any f 
blog nc � 1, we have

T (f)  f(f + 1)� + f⌧ +
f(f + 1)

2
B(n) (1)

where B(n) = 8⌧ log n.

This upper bound is pessimistic for many reasons, which
are discussed after the proof. But the key point is that the
algorithm tolerates up to blog nc � 1 overlapping failures in
logarithmic time O((log n)3).

Proof. Starting from a non stable configuration, the next
stable configuration will be reached when (i) all nodes are
informed of the di↵erent failures via the broadcast, and (ii)
processes of the ring are reconnected. Recall that every
time a node has detected a failure, it initiates a broad-
cast that executes within B = B(n) = 8⌧ log n time units,
and which is guaranteed to reach all alive nodes as long as
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f  blog nc�1. Because we interleave reconnection messages
within the broadcast, B encompasses both the broadcast
and the reconnection. However, due to the one-port model,
we cannot assume anything about the pipelining of several
consecutive broadcast operations. In this proof, we make a
first simplification by over-approximating T (f) as the max-
imum time R(f) to reconnect the ring after f overlapping
failures, plus the time to execute all the broadcasts that were
initiated, in sequence (assuming no overlap at all). We prove
an upper bound on R(f) by induction, letting R(0) = 0:

Lemma 1. For 1  f  blog nc � 1, we have

R(f)  R(f � 1) + 2f� + ⌧ (2)

Proof. We first prove Equation (2) when f = 1. Assume
that node p, observed by node q, fails. After receiving the
last heartbeat, q needs � time units to detect the failure
(line 15 of Algorithm 1). Thus, the worst possible scenario
is when p fails right after sending a heartbeat, which will
take ⌧ time units to reach q. Thus q detects the failure after
⌧+� time units. Finally, q sends the reconnection message to
the predecessor of p, which will take ⌧ , hence R(1)  2⌧ + �.
We keep the over-approximation R(1)  ⌧ + 2� to simplify
the formula in the general case.
Assume now that Equation (2) holds for all f  blog nc�2.

Now consider an execution with f + 1 overlapping failures,
the first of them striking at time 0 (see Figure 2). The
(f + 1)-th failure strikes at time t. Necessarily t  R(f),
otherwise the ring would have been reconnected after f fail-
ures, and the last one would not be overlapping. There are
f dead nodes just before time t among the original n alive
nodes, which define k  f segments Ii, 1  i  k. Here,
segment Ii is an interval of di � 1 consecutive dead nodes
(see Figure 1). Of course

Pk
i=1

di = f , and there remain
n� f alive nodes. There are multiple cases depending upon
which node is struck by the (f + 1)-th failure at time t:
(a) The new failure strikes a node that is neither a prede-

cessor nor a successor of a segment (e.g., the failure strikes
node 7 in Figure 1). In that case, a new segment of length
1 is created, and the ring is reconnected at time t+R(1).
(b) The new failure strikes a node p that precedes a seg-

ment Ii. Let q be the successor of the last dead node in Ii.
By definition, q 6= p. There are two sub-cases: (i) The pre-
decessor p0 of p is still alive (e.g., the failure strikes node 1
preceding segment I

1

in Figure 1, q = 4 and p0 = 0 is alive).
Then the size of segment Ii is increased by one. In the worst
case, q is not aware of the death of any node in Ii at time
t, and needs to probe all these nodes one after the other
before reconnecting with p0 (in the example, q = 4 needs to
try to reconnect with 2 and 1 since it is not aware of their
death). This costs at most (di +1)(2�) + ⌧  2(f +1)�+ ⌧ ,
because di + 1  f + 1, hence the ring is reconnected at

Scalable Failure
Detector

f = supported number of overlapping failures
Stabilization Time T(f) = duration of the 
longest sequence of non stable 
configurations assuming at most f 
overlapping faults
Broadcast Time B(n)

vided that no more than k � 1 crashes strike during its ex-
ecution. The time for one complete broadcast algorithm in
Algorithm 1 would then be (upper bounded by) 4⌧ log n in
the absence of any other messages, since we use two HBA
calls in sequence. But our algorithm also requires heart-
beats to be sent along the ring, as well as NewObserver
messages when ring reconnection is needed. Assuming that
⌘ � 3⌧ (where ⌘ is the heartbeat period), we can always in-
sert broadcast and NewObserver messages in between two
successive heartbeats, thereby guaranteeing that a broadcast
in Algorithm 1 will always execute within B(n) = 8⌧ log n,
assuming no new failure interrupts the broadcast operation.

3.1.3 Stable Configuration and Stabilization Time
Here we consider executions that, from the initial con-

figuration, reached a steady state before a failure hit the
system and made it leave that steady state. To prove the
correctness of our algorithm, we show that in a given time,
the system returns to a steady state, assuming that no more
than a bounded number of failures strike during this time.

Connected Node A node p is connected with its successor
in a configuration, if p is alive and emitterp is the closest
predecessor of p that is alive (on the ring). It is connected
with its predecessor if it is alive, and observerp is the clos-
est successor of p that is alive in that configuration. It is
reconnected if it is connected with both its successor and
predecessor. If all processors are reconnected, we say the
ring is reconnected.

Stable Configuration A configuration C is the global state
of all processes plus the status of the network. A configura-
tion is declared as stable, if any alive node p is reconnected
in C and for any node q, q 2 Dp () q is dead in C.

Stabilization Time T (f), with f being the number of over-
lapping failures, is the duration of the longest sequence of
non stable configurations during any execution, assuming at
most f failures during the sequence.

3.2 Correctness and Performance Analysis
The main result is the following proof of correctness, that

provides a deterministic upper bound on the Stabilization
Time T (f) of the algorithm with at most f overlapping
faults:

Theorem 1. With n  N alive nodes, and for any f 
blog nc � 1, we have

T (f)  f(f + 1)� + f⌧ +
f(f + 1)

2
B(n) (1)

where B(n) = 8⌧ log n.

This upper bound is pessimistic for many reasons, which
are discussed after the proof. But the key point is that the
algorithm tolerates up to blog nc � 1 overlapping failures in
logarithmic time O((log n)3).

Proof. Starting from a non stable configuration, the next
stable configuration will be reached when (i) all nodes are
informed of the di↵erent failures via the broadcast, and (ii)
processes of the ring are reconnected. Recall that every
time a node has detected a failure, it initiates a broad-
cast that executes within B = B(n) = 8⌧ log n time units,
and which is guaranteed to reach all alive nodes as long as

8

7

6
5

4

3

2
1

0

Figure 1: Segments of dead nodes after f = 3 failures: n = 9,
k = 2, I

1

= {2, 3}, I
2

= {5}, d
1

= 2 and d
2

= 1.

f  blog nc�1. Because we interleave reconnection messages
within the broadcast, B encompasses both the broadcast
and the reconnection. However, due to the one-port model,
we cannot assume anything about the pipelining of several
consecutive broadcast operations. In this proof, we make a
first simplification by over-approximating T (f) as the max-
imum time R(f) to reconnect the ring after f overlapping
failures, plus the time to execute all the broadcasts that were
initiated, in sequence (assuming no overlap at all). We prove
an upper bound on R(f) by induction, letting R(0) = 0:

Lemma 1. For 1  f  blog nc � 1, we have

R(f)  R(f � 1) + 2f� + ⌧ (2)

Proof. We first prove Equation (2) when f = 1. Assume
that node p, observed by node q, fails. After receiving the
last heartbeat, q needs � time units to detect the failure
(line 15 of Algorithm 1). Thus, the worst possible scenario
is when p fails right after sending a heartbeat, which will
take ⌧ time units to reach q. Thus q detects the failure after
⌧+� time units. Finally, q sends the reconnection message to
the predecessor of p, which will take ⌧ , hence R(1)  2⌧ + �.
We keep the over-approximation R(1)  ⌧ + 2� to simplify
the formula in the general case.
Assume now that Equation (2) holds for all f  blog nc�2.

Now consider an execution with f + 1 overlapping failures,
the first of them striking at time 0 (see Figure 2). The
(f + 1)-th failure strikes at time t. Necessarily t  R(f),
otherwise the ring would have been reconnected after f fail-
ures, and the last one would not be overlapping. There are
f dead nodes just before time t among the original n alive
nodes, which define k  f segments Ii, 1  i  k. Here,
segment Ii is an interval of di � 1 consecutive dead nodes
(see Figure 1). Of course

Pk
i=1

di = f , and there remain
n� f alive nodes. There are multiple cases depending upon
which node is struck by the (f + 1)-th failure at time t:
(a) The new failure strikes a node that is neither a prede-

cessor nor a successor of a segment (e.g., the failure strikes
node 7 in Figure 1). In that case, a new segment of length
1 is created, and the ring is reconnected at time t+R(1).
(b) The new failure strikes a node p that precedes a seg-

ment Ii. Let q be the successor of the last dead node in Ii.
By definition, q 6= p. There are two sub-cases: (i) The pre-
decessor p0 of p is still alive (e.g., the failure strikes node 1
preceding segment I

1

in Figure 1, q = 4 and p0 = 0 is alive).
Then the size of segment Ii is increased by one. In the worst
case, q is not aware of the death of any node in Ii at time
t, and needs to probe all these nodes one after the other
before reconnecting with p0 (in the example, q = 4 needs to
try to reconnect with 2 and 1 since it is not aware of their
death). This costs at most (di +1)(2�) + ⌧  2(f +1)�+ ⌧ ,
because di + 1  f + 1, hence the ring is reconnected at

The broadcast algorithm can tolerate up to
overlapping failures, thus blog(n)c
T (f) ⇠ O((log n)3)

vided that no more than k � 1 crashes strike during its ex-
ecution. The time for one complete broadcast algorithm in
Algorithm 1 would then be (upper bounded by) 4⌧ log n in
the absence of any other messages, since we use two HBA
calls in sequence. But our algorithm also requires heart-
beats to be sent along the ring, as well as NewObserver
messages when ring reconnection is needed. Assuming that
⌘ � 3⌧ (where ⌘ is the heartbeat period), we can always in-
sert broadcast and NewObserver messages in between two
successive heartbeats, thereby guaranteeing that a broadcast
in Algorithm 1 will always execute within B(n) = 8⌧ log n,
assuming no new failure interrupts the broadcast operation.

3.1.3 Stable Configuration and Stabilization Time
Here we consider executions that, from the initial con-

figuration, reached a steady state before a failure hit the
system and made it leave that steady state. To prove the
correctness of our algorithm, we show that in a given time,
the system returns to a steady state, assuming that no more
than a bounded number of failures strike during this time.

Connected Node A node p is connected with its successor
in a configuration, if p is alive and emitterp is the closest
predecessor of p that is alive (on the ring). It is connected
with its predecessor if it is alive, and observerp is the clos-
est successor of p that is alive in that configuration. It is
reconnected if it is connected with both its successor and
predecessor. If all processors are reconnected, we say the
ring is reconnected.

Stable Configuration A configuration C is the global state
of all processes plus the status of the network. A configura-
tion is declared as stable, if any alive node p is reconnected
in C and for any node q, q 2 Dp () q is dead in C.

Stabilization Time T (f), with f being the number of over-
lapping failures, is the duration of the longest sequence of
non stable configurations during any execution, assuming at
most f failures during the sequence.

3.2 Correctness and Performance Analysis
The main result is the following proof of correctness, that

provides a deterministic upper bound on the Stabilization
Time T (f) of the algorithm with at most f overlapping
faults:

Theorem 1. With n  N alive nodes, and for any f 
blog nc � 1, we have

T (f)  f(f + 1)� + f⌧ +
f(f + 1)

2
B(n) (1)

where B(n) = 8⌧ log n.

This upper bound is pessimistic for many reasons, which
are discussed after the proof. But the key point is that the
algorithm tolerates up to blog nc � 1 overlapping failures in
logarithmic time O((log n)3).

Proof. Starting from a non stable configuration, the next
stable configuration will be reached when (i) all nodes are
informed of the di↵erent failures via the broadcast, and (ii)
processes of the ring are reconnected. Recall that every
time a node has detected a failure, it initiates a broad-
cast that executes within B = B(n) = 8⌧ log n time units,
and which is guaranteed to reach all alive nodes as long as
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f  blog nc�1. Because we interleave reconnection messages
within the broadcast, B encompasses both the broadcast
and the reconnection. However, due to the one-port model,
we cannot assume anything about the pipelining of several
consecutive broadcast operations. In this proof, we make a
first simplification by over-approximating T (f) as the max-
imum time R(f) to reconnect the ring after f overlapping
failures, plus the time to execute all the broadcasts that were
initiated, in sequence (assuming no overlap at all). We prove
an upper bound on R(f) by induction, letting R(0) = 0:

Lemma 1. For 1  f  blog nc � 1, we have

R(f)  R(f � 1) + 2f� + ⌧ (2)

Proof. We first prove Equation (2) when f = 1. Assume
that node p, observed by node q, fails. After receiving the
last heartbeat, q needs � time units to detect the failure
(line 15 of Algorithm 1). Thus, the worst possible scenario
is when p fails right after sending a heartbeat, which will
take ⌧ time units to reach q. Thus q detects the failure after
⌧+� time units. Finally, q sends the reconnection message to
the predecessor of p, which will take ⌧ , hence R(1)  2⌧ + �.
We keep the over-approximation R(1)  ⌧ + 2� to simplify
the formula in the general case.
Assume now that Equation (2) holds for all f  blog nc�2.

Now consider an execution with f + 1 overlapping failures,
the first of them striking at time 0 (see Figure 2). The
(f + 1)-th failure strikes at time t. Necessarily t  R(f),
otherwise the ring would have been reconnected after f fail-
ures, and the last one would not be overlapping. There are
f dead nodes just before time t among the original n alive
nodes, which define k  f segments Ii, 1  i  k. Here,
segment Ii is an interval of di � 1 consecutive dead nodes
(see Figure 1). Of course

Pk
i=1

di = f , and there remain
n� f alive nodes. There are multiple cases depending upon
which node is struck by the (f + 1)-th failure at time t:
(a) The new failure strikes a node that is neither a prede-

cessor nor a successor of a segment (e.g., the failure strikes
node 7 in Figure 1). In that case, a new segment of length
1 is created, and the ring is reconnected at time t+R(1).
(b) The new failure strikes a node p that precedes a seg-

ment Ii. Let q be the successor of the last dead node in Ii.
By definition, q 6= p. There are two sub-cases: (i) The pre-
decessor p0 of p is still alive (e.g., the failure strikes node 1
preceding segment I

1

in Figure 1, q = 4 and p0 = 0 is alive).
Then the size of segment Ii is increased by one. In the worst
case, q is not aware of the death of any node in Ii at time
t, and needs to probe all these nodes one after the other
before reconnecting with p0 (in the example, q = 4 needs to
try to reconnect with 2 and 1 since it is not aware of their
death). This costs at most (di +1)(2�) + ⌧  2(f +1)�+ ⌧ ,
because di + 1  f + 1, hence the ring is reconnected at

reconnect propagate

Timeout for suspecting a failure 2.5s
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Scalable Revocation
• The underlying BMG topology is 

symmetric and reflects in the 
revoke which is independent of 
the initiator

• The performance of the first post-
Revoke collective operation 
sustains some performance 
degradation resulting from the 
network jitter associated with the 
circulation of revoke tokens

• After the fifth Barrier 
(approximately 700µs), the 
application is fully resynchronized, 
and the Revoke reliable broadcast 
has completely terminated, 
therefore leaving the application 
free from observable jitter. 
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Figure 3: Revoke cost in Barrier depending on the

initiator rank calling MPIX_COMM_REVOKE (6,000 pro-

cesses).

erations posted on commB until the typical latency becomes
similar to pre-Revoke operations on commA.

The collective communication patterns are inherited, with-
out modification, from the Open MPI non-fault tolerant
“tuned” module. The Cray optimized MPI can, in some
instances, achieve higher performance. For the purpose of
our evaluation, the tuned generic implementation, based on
MPI point-to-point message exchanges, is representative of
users’ communication patterns commonly found in typical,
portable HPC applications.

4.2 Initiator Location and Revoke Impact
Figure 3 presents the latency of Barriers on 6,000 pro-

cesses, depending on the rank of the initiator process that
invokes the MPIX_COMM_REVOKE operation. Thanks to the
symmetric nature of the BMG topology, the Revoked Bar-
rier latency is stable and independent of the initiator rank.
One can note that the time to complete a Revoked Bar-
rier is smaller than the time to complete a normal Barrier.
The normal Barrier has a strong synchronizing semantic:
the operation cannot complete before every process has en-
tered the barrier. A Revoked Barrier doesn’t enforce that
synchronization anymore and it can complete locally before
some processes have participated. Instead, the latency of the
Revoked operation denotes the time taken by the Revoke re-
silient broadcast to reach every rank for the first time; this
propagation latency is similar to the cost of a small message
Broadcast.

However, as stated before, when the Revoke notification
has been delivered to every rank, the reliable broadcast has
not terminated yet, and some Revoke token messages have
been freshly injected in the network (at the minimum, the
2log2(n) messages injected by the last rank to deliver the
Revoke notification are still circulating in the network). As

a consequence, the performance of the first post-Revoke col-
lective operation sustains some performance degradation re-
sulting from the network jitter associated with the circula-
tion of these tokens. This performance degradation is mod-
erate, with the latency approximately doubling. The jitter
noise is equally spread on the BMG topology, therefore, the
increased latency of the first (and the much reduced impact
on the 2nd to 5th) Barrier is also independent of the initia-
tors’ rank.
Although after the first post-Revoke Barrier, no new Re-

voke tokens are injected (when the first Barrier of plan B
completes, a Revoke token has been delivered at every rank,
thus every rank has already injected its reliable broadcast
tokens), the absorption of delayed tokens and the lost syn-
chrony resulting from the initial jitter combine to impact
slightly the Barrier performance. After the fifth Barrier (ap-
proximately 700µs), the application is fully resynchronized,
and the Revoke reliable broadcast has terminated, therefore
leaving the application free from observable jitter.

4.3 Scalability
Figure 4 presents the scalability of the Barrier (left) and

AllReduce (right) collective communications in the Revoke
benchmark. The first observation is that the performance
of post-Revoke collective communications follows the same
scalability trend as the pre-Revoke operations, even those
impacted by jitter. In the case of the AllReduce collec-
tive communication, aside from the 1st post-Revoke AllRe-
duce communication, which still exhibit a moderate over-
head from jitter, the 2nd post-Revoke AllReduce is only
mildly impacted and the 3rd AllReduce exhibit no signif-
icant di↵erence from the failure free case, illustrating that
the jitter introduced by the reliable broadcast algorithm has
a lesser impact on this communication pattern. When the
number of processes increases, the impact of jitter —the
di↵erence between the failure-free and the 1st post-Revoke
operation— is almost constant (or slightly decreasing). If
this trend were to continue at larger scales, the impact of
jitter could become asymptotically negligible.
Last, while the implementations of the “tuned” collective

operations di↵er in performance trends on this Cray machine
(for reasons outside of the scope of this work, but rooting in
the internal collective algorithm selection logic being tuned
for the Infiniband network), the performance of the revoked
operation is similar in both cases, illustrating that, as long
as MPI progress is triggered, the propagation latency of the
BMG reliable broadcast is independent from the communi-
cation plan being revoked.

4.4 AllReduce and Message Size
Figure 5 presents the latency of the AllReduce collective

communication when the message size varies. Focusing first
on the cost of the Revoked AllReduce operation, one can ob-
serve that the duration of the operation remains independent
of the message size until the message size increases to 1MB
or more. As the Revoked operation is interrupted before ex-
changing the entire communication volume, this behavior is
expected. For larger message sizes, however, the delivery of
the Revoke notification may be delayed by the granularity
of the ongoing reduction computation; as these computa-
tions are progressing, the MPI progress engine is managing
them with maximum priority, and thus does not consider
incoming fragments for that time duration. As soon as one

NICS Darter (Cray XC30)
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• Early Returning Algorithm: once 
the decision reached the local 
process returns, but the decided 
value remains available for 
providing to other processes

• The underlying logical topology 
hierarchically adapts to reflects to 
network topology

• In the failure-free case the 
implementation exhibits the 
theoretically proven logarithmic 
behavior, similar to an optimized 
version of MPI_Allreduce

• The optional rebalancing step is 
not justified until the topology 
degenerates enough to need it.

(a) ERA versus Log2phases Agreement scal-

ability in the failure-free case.
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(b) ERA performance depending on the tree

topology.

(c) Post Failure Agreement Cost.

Failed Ranks 0 (root) 4 (child of 0) 16 (node master) 17 (child of 16) 16–31 (full node)

Detecting Agreement 12,659 93,816 80,023 112,414 82,171
Stabilize Agreement 104.9 102 98.9 104.2 117.1
Post-failure Agreement 69.7 75.7 77.1 76.7 85.2

(d) Cost (µs) depending on the role of the failed process in a bin/bin ERA w/o rebalancing, 6000 procs.

Figure 2: Synthetic benchmark performance of the agreement.

resentation, it is implemented just above the Byte Trans-
fer Layer of Open MPI (below the MPI semantic layer):
this enables the reception ofRESULTREQUEST messages
even when outside an MPIX_COMM_AGREE call, as imposed by
the early returning property of the algorithm. Additionally,
based on our prior studies highlighting the fact that local
computations exhibiting linear behaviors dominate the cost,
even in medium scale environments, we have taken extra
steps to ensure that, when possible, all local operations fol-
low a logarithmic time-to-solution.

This implementation was validated using a stress test that
performs an infinite loop of agreements, where any failed
process is replaced with a new process. Failures are injected
by killing random MPI processes with di↵erent frequencies.
A 24h run on 128 processors (16 nodes, 8 cores each, TCP
over Gigabit Ethernet) completed 969,739 agreements suc-
cesfully while tolerating 146,213 failures.

5.1 Agreement Performance
We deploy a synthetic benchmark on the NICS Darter

supercomputer, a Cray XC30 (cascade) machine, to analyze
the agreement latency with and without failures at scale.
We employ the ugni transport layer to exploit the Cray
Aries interconnect, and the sm transport layer for inter-core
communication.

The benchmark calls MPIX_COMM_AGREE in a loop, with fail-
ures injected at controllable iterations and processes. We
consider four types of agreements: failure-free agreements
precede the injection of a failure. The first agreement during
which a failure manifests is the failure detecting agreement;
it returns MPI_ERR_PROC_FAILED per ULFM specification.
One additional stabilizing agreement, or more for complex
failure scenarios, is then necessary to acknowledge the fail-
ure(s), optimize the agreement tree, and return MPI_SUCCESS.
Subsequent post-failure agreements do not experience sup-
plementary failures. For each participant, we collect the

mean duration, and the standard deviation over 32k agree-
ments; the reported mean time is the maximum between the
mean times collected at all processes.

Scalability. In Figure 2a, we present the scalability trend
of ERA when no failures are disturbing the system. We con-
sider two di↵erent agreement implementations, 1) the known
state-of-the-art 2-phase-commit Agreement algorithm pre-
sented in [23], called Log2phases, and 2) our best perform-
ing version of ERA. We also add, for reference, the perfor-
mance of an Allreduce operation that in a failure-free con-
text would have had the same outcome as the agreement.
With the bin/bin topology on the darter machine using one
process per core, thus 16 processes per node, the average
branching degree of non-leaf nodes is 2.125. The ERA and
the Allreduce operations both exhibit a logarithmic trend
when the number of nodes increase, as can be observed by
the close fit (asymptotic standard error of 0.6%) of the log-
arithmic function era(x) = 6.7 log2.125(x). In contrast, the
Log2phases algorithm exhibits a linear scaling with the num-
ber of nodes, despite the expected theoretical bound pro-
posed in [23]. As a result, we stopped testing the perfor-
mance of the Log2phases algorithms at larger scale or under
the non failure-free scenarios.

Communication Topologies. In Figure 2b we compare the
performance of di↵erent architecture-aware versions of the
ERA algorithm. In the flat binary tree, all ranks are orga-
nized in a binary tree, regardless of the hardware locality of
ranks collocated on cores of the same node. In the hierar-
chical methods, one rank represents the node and partici-
pates in the inter-node binary tree; on each node, collocated
ranks are all children of the representing rank in the bin/s-
tar method, or are organized along a node-local binary tree
in the bin/bin method. The flat binary topology ERA and
the Open MPI Allreduce are both hardware locality agnos-

NICS Darter (Cray XC30)
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• Early Returning Algorithm: once 
the decision reached the local 
process returns, but the decided 
value remains available for 
providing to other processes

• The underlying logical topology 
hierarchically adapts to reflects to 
network topology

• In the failure-free case the 
implementation exhibits the 
theoretically proven logarithmic 
behavior, similar to an optimized 
version of MPI_Allreduce

• The optional rebalancing step is 
not justified until the topology 
degenerates enough to need it.

NICS Darter (Cray XC30)(a) ERA versus Log2phases Agreement scal-

ability in the failure-free case.

(b) ERA performance depending on the tree

topology.
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(c) Post Failure Agreement Cost.

Failed Ranks 0 (root) 4 (child of 0) 16 (node master) 17 (child of 16) 16–31 (full node)

Detecting Agreement 12,659 93,816 80,023 112,414 82,171
Stabilize Agreement 104.9 102 98.9 104.2 117.1
Post-failure Agreement 69.7 75.7 77.1 76.7 85.2

(d) Cost (µs) depending on the role of the failed process in a bin/bin ERA w/o rebalancing, 6000 procs.

Figure 2: Synthetic benchmark performance of the agreement.

resentation, it is implemented just above the Byte Trans-
fer Layer of Open MPI (below the MPI semantic layer):
this enables the reception ofRESULTREQUEST messages
even when outside an MPIX_COMM_AGREE call, as imposed by
the early returning property of the algorithm. Additionally,
based on our prior studies highlighting the fact that local
computations exhibiting linear behaviors dominate the cost,
even in medium scale environments, we have taken extra
steps to ensure that, when possible, all local operations fol-
low a logarithmic time-to-solution.

This implementation was validated using a stress test that
performs an infinite loop of agreements, where any failed
process is replaced with a new process. Failures are injected
by killing random MPI processes with di↵erent frequencies.
A 24h run on 128 processors (16 nodes, 8 cores each, TCP
over Gigabit Ethernet) completed 969,739 agreements suc-
cesfully while tolerating 146,213 failures.

5.1 Agreement Performance
We deploy a synthetic benchmark on the NICS Darter

supercomputer, a Cray XC30 (cascade) machine, to analyze
the agreement latency with and without failures at scale.
We employ the ugni transport layer to exploit the Cray
Aries interconnect, and the sm transport layer for inter-core
communication.

The benchmark calls MPIX_COMM_AGREE in a loop, with fail-
ures injected at controllable iterations and processes. We
consider four types of agreements: failure-free agreements
precede the injection of a failure. The first agreement during
which a failure manifests is the failure detecting agreement;
it returns MPI_ERR_PROC_FAILED per ULFM specification.
One additional stabilizing agreement, or more for complex
failure scenarios, is then necessary to acknowledge the fail-
ure(s), optimize the agreement tree, and return MPI_SUCCESS.
Subsequent post-failure agreements do not experience sup-
plementary failures. For each participant, we collect the

mean duration, and the standard deviation over 32k agree-
ments; the reported mean time is the maximum between the
mean times collected at all processes.

Scalability. In Figure 2a, we present the scalability trend
of ERA when no failures are disturbing the system. We con-
sider two di↵erent agreement implementations, 1) the known
state-of-the-art 2-phase-commit Agreement algorithm pre-
sented in [23], called Log2phases, and 2) our best perform-
ing version of ERA. We also add, for reference, the perfor-
mance of an Allreduce operation that in a failure-free con-
text would have had the same outcome as the agreement.
With the bin/bin topology on the darter machine using one
process per core, thus 16 processes per node, the average
branching degree of non-leaf nodes is 2.125. The ERA and
the Allreduce operations both exhibit a logarithmic trend
when the number of nodes increase, as can be observed by
the close fit (asymptotic standard error of 0.6%) of the log-
arithmic function era(x) = 6.7 log2.125(x). In contrast, the
Log2phases algorithm exhibits a linear scaling with the num-
ber of nodes, despite the expected theoretical bound pro-
posed in [23]. As a result, we stopped testing the perfor-
mance of the Log2phases algorithms at larger scale or under
the non failure-free scenarios.

Communication Topologies. In Figure 2b we compare the
performance of di↵erent architecture-aware versions of the
ERA algorithm. In the flat binary tree, all ranks are orga-
nized in a binary tree, regardless of the hardware locality of
ranks collocated on cores of the same node. In the hierar-
chical methods, one rank represents the node and partici-
pates in the inter-node binary tree; on each node, collocated
ranks are all children of the representing rank in the bin/s-
tar method, or are organized along a node-local binary tree
in the bin/bin method. The flat binary topology ERA and
the Open MPI Allreduce are both hardware locality agnos-



Scalable CID Allocation
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• Default Open MPI algorithm loops 
round an MPI_ALLREDUCE 
operations using the smallest CID 
available. MVAPICH does a bit-
array reduction by limiting the 
number of available 
communicators to 2048.

• Highest-CID loops using the 
maximum used CID instead

• Guarantees a CID allocation in 1 
step if not multi-threading 
conflicts, but the sparsity of the 
CID might be problematic

• Different CID storage algorithms: A 
red-black tree and a 4-byte 
multidimensional array

• Typical communicator recreation usage in 
ULFM: MPI_COMM_SPLIT to replace the 
processes in the same order as originally

• 128 max processes per communicator



Impact on Applications
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S3D - Fenix

• “Practical Scalable Consensus for Pseudo-
Synchronous Distributed Systems” – Tue 4:30PM 
Room 18CD
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Figure 3: Recovery overhead of the shrink operation, which uses the agreement algorithm. In Figure 3b, the subindex in the
4913-cores tests indicates a di↵erent distribution of failures within the 512-cores group.

tic; their performance profiles are extremely similar. In con-
trast, the Cray Allreduce exhibits a better scalability thanks
to accounting for the locality of ranks. Counterintuitively,
the bin/star hierarchical topology performs worse than the
flat binary tree: the representing rank for a node has 16
local children and the resulting 16 sequential memcopy oper-
ations (on the shared-memory device) take longer than the
latency to cross the supplementary long-range links. In the
bin/bin topology, most of these memory copies are paral-
lelized and henceforth the overall algorithm scales logarith-
mically. When compared with the fully optimized, non fault
tolerant Allreduce, the latency is doubled, which is a logical
consequence of the need for the ERA operation to sequential-
ize a reduce and a broadcast that do not overlap (to ensure
the consistent decision criterion in the failure case), while
the Allreduce operation is spared that requirement and can
overlap multiple interweaved reductions.

Impact of Failures. In Figure 2c we analyze the cost of
failure-detecting, stabilizing and post-failure agreements as
defined in Section 5.1. The cost of the failure-detecting
agreement is strongly correlated to the network layer time-
out and the propagation latency of failure information in
the failure detector infrastructure (in this case, out-of-band
propagation over a TCP overlay in the runtime layer of Open
MPI). The stabilizing ERA exhibits a linear overhead re-
sulting from the cost of rebuilding the ERA topology tree,
an operation that ensures optimal post-failure performance,
but is optional for correctness. Indeed, the performance of
a rebalanced post-failure ERA is indistinguishable from a
failure-free agreement. When only one failure is injected,
the cost of rebalancing the tree is not justified since the
performance of the post failure non-rebalanced agreement is
similar to the rebalanced agreement. Meanwhile, the cost
of the stabilizing agreement without tree rebuilding is simi-
lar to a post-failure agreement, suggesting that the tree re-
building should be conditional, and triggered only when the
topology has degenerated after a large number of failures.

We considered other scenarios of failure in Table 2d. Start-
ing from a setup with 6,000 processes, we used the same
benchmark as above, but instead of always injecting fail-
ures on the same rank, we considered di↵erent cases of pro-
cess failures: a) when the rank 0 fails (initial root of the
agreement tree); b) when a direct child of the root of the

agreement tree process fails; c) when a node-representative
process fails; d) when some process that is not a node-
representative fails; and e) when all the processes of an entire
node fail but not the root of the agreement tree. As can be
observed and was explained before, the detecting agreement
is subject to a high latency due to limitations in the failure
detection implementation; then the stabilize agreement pays
the overhead of establishing additional connections to bypass
the failed processes, and the post-failure agreements return
to a small latency that is function of the new reduction tree.
As the tree is not re-balanced in this experiment, one can
observe a slight reduction of performance when the failure is
injected lower in the tree. Hence, a practical approach would
be to trigger the tree-rebalancing only when an agreement
must be executed on a communicator after multiple failures.
Moreover, in a context where the communicators are rebuilt
after a failure, the cost of the tree-rebalancing can be spared.

5.2 Application Usage

5.2.1 S3D and FENIX

S3D is a highly parallel method-of-lines solver for partial
di↵erential equations and is used to perform first-principles-
based direct numerical simulations of turbulent combustion.
It employs high order explicit finite di↵erence numerical
schemes for spatial and temporal derivatives, and realis-
tic physics for thermodynamics, molecular transport, and
chemical kinetics. S3D has been ported to all major plat-
forms, demonstrates good scalability up to nearly 200K cores,
and has been highlighted by [1] as one of five promising ap-
plications on the path to exascale.
Fenix is a framework aimed at enabling online (i.e., with-

out disrupting the job) and transparent recovery from pro-
cess, node, blade, and cabinet failures for parallel applica-
tions in an e�cient and scalable manner. Fenix encapsu-
lates mechanisms to transparently capture failures through
ULFM return codes, re-spawn new processes on spare nodes
when possible, fix failed communicators using ULFM ca-
pabilities, restore application state, and return the execu-
tion control back to the application. Fenix can leverage
existing checkpointing solutions to enable automatic data
recovery, but this evaluation uses application-driven, disk-
less, implicitly-coordinated checkpointing. Process recovery
in Fenix involves four key stages: (i) detecting the failure,



ULFM MPI API
Part rationale, part examples

35



Hands On: Fault Tolerant MPI 
with ULFM

Aurelien Bouteiller @SC16
A failure, you say? 



Installing and using the Docker
• ULFM Open MPI branch packaged in a docker
1. Install Docker: You can install Docker quickly, either by downloading one of the 

official builds from http://docker.io for MacOS and Windows, or by installing 
Docker from your Linux or MAcOS package manager (i.e. yum install docker, apt-
get docker-io, brew/port install docker-io).

2. In a terminal, Run `$ docker hello-world` to verify that the docker installation 
works.

3. Load the pre-compiled ULFM Docker machine into your Docker installation
```xzcat <ftmpi_ulfm-1.1.xz | docker load```. On MacOS, the system provided `zcat` can handle xz
archives

4. Source the docker aliases which will redirect the "make" and "mpirun" command 
in the local shell to execute in the Docker machine.

```sh$ . dockervars.sh load```.
5. Go to the tutorial examples directory. You can now type `make` to compile the 

examples using the Docker provided     "mpicc", and you can execute the 
generated examples in the Docker machine using `mpirun -am ft-enable-mpi -np 
10 example`. Note the special `-am ft-enable-mpi` parameter; 

• Complete examples (corrections) are name a*, incomplete examples are named [0-
9]*
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Bye bye, world

• This program will abort (default error handler)
• What do we need to do to make if fault tolerant? 

38

19 int main(int argc, char *argv[])
20 {
21 int rank, size;
22 
23 MPI_Init(NULL, NULL);
24 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
25 MPI_Comm_size(MPI_COMM_WORLD, &size);
26 
27 if( rank == (size-1) ) raise(SIGKILL);
28 MPI_Barrier(MPI_COMM_WORLD);
29 printf("Rank %d / %d\n", rank, size);
30 
31 MPI_Finalize();
32 }

Injecting a failure 
at the highest 
rank processor

See 0.noft.c



Bye bye, world, but orderly

• Using only MPI-2 at the moment J

39

19 int main(int argc, char *argv[])
20 {
21 int rank, size, rc, len;
22 char errstr[MPI_MAX_ERROR_STRING];
23 
24 MPI_Init(NULL, NULL);
25 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
26 MPI_Comm_size(MPI_COMM_WORLD, &size);
27 
28 MPI_Comm_set_errhandler(MPI_COMM_WORLD,
29 MPI_ERRORS_RETURN);
30 
31 if( rank == (size-1) ) raise(SIGKILL);
32 rc = MPI_Barrier(MPI_COMM_WORLD);                                                                                           
33 MPI_Error_string(rc, errstr, &len);
34 printf("Rank %d / %d: Notified of error %s. Stayin' alive!\n",
35 rank, size, errstr);
36 
37 MPI_Finalize();
38 }

We can get a 
nice error string

See 1.errreturns.c

Errors are not 
fatal anymore: 
return an error 
code instead

collect the error code in rc

All non-faulty 
processes 

survive and print 
the success or 

error, as 
reported from 
MPI_Barrier



Handling errors separately

• Still using only MPI-2 J
40

19 static void verbose_errhandler(MPI_Comm* comm, int* err, ...) {
…
21 char errstr[MPI_MAX_ERROR_STRING];
…
26 MPI_Error_string( *err, errstr, &len );
27 printf("Rank %d / %d: Notified of error %s\n",
28 rank, size, errstr);
29 }
30 
31 int main(int argc, char *argv[]) {
…
33 MPI_Errhandler errh;
…
39 MPI_Comm_create_errhandler(verbose_errhandler,
40 &errh);
41 MPI_Comm_set_errhandler(MPI_COMM_WORLD,
42 errh);
…
45 MPI_Barrier(MPI_COMM_WORLD);
46 printf("Rank %d / %d: Stayin' alive!\n", rank, size);

See 2.errhandler.c

We can pack all error 
management in an 

“error handler”

Create an “errhandler” 
object from the C 

function, and attach it 
to the communicator



Handling errors separately

• Still using only MPI-2 J
41

19 static void verbose_errhandler(MPI_Comm* comm, int* err, ...) {
…
21 char errstr[MPI_MAX_ERROR_STRING];
…
26 MPI_Error_string( *err, errstr, &len );
27 printf("Rank %d / %d: Notified of error %s\n",
28 rank, size, errstr);
29 }
30 
31 int main(int argc, char *argv[]) {
…
33 MPI_Errhandler errh;
…
39 MPI_Comm_create_errhandler(verbose_errhandler,
40 &errh);
41 MPI_Comm_set_errhandler(MPI_COMM_WORLD,
42 errh);
…
45 MPI_Barrier(MPI_COMM_WORLD);
46 printf("Rank %d / %d: Stayin' alive!\n", rank, size);

See 2.errhandler.c

No need to collect rc anymore J



What caused the error?

• ULFM defines 3 new error classes: 
• MPI_ERR_PROC_FAILED
• MPI_ERR_PROC_FAILED_PENDING
• MPI_ERR_REVOKED
• After these errors, MPI can be repaired

• All other errors still have MPI-2 
semantic
• May or may not be able to continue after it has been 

reported
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13 #include <mpi.h>
14 #include <mpi-ext.h>
…
19 static void verbose_errhandler(MPI_Comm* pcomm, int* perr, ...) {
20 MPI_Comm comm = *pcomm;
21 int err = *perr;
…
23 int …, eclass;                                                                                         
…
27 MPI_Error_class(err, &eclass);
28 if( MPIX_ERR_PROC_FAILED != eclass ) {
29 MPI_Abort(comm, err);
30 }
…

See 2.errhander.c

This is an “MPI error 
code”

Convert the “error code” 
to an “MPI error class”

MPIX_ERR_PROC_FAILED: a process 
failed, we can deal with it.

Something else: ULFM MPI return the error 
but it still may be impossible to recover; in 

this app, we abort when that happens

ULFM is an extension to the MPI standard



Who caused the error
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…
19 static void verbose_errhandler(MPI_Comm* pcomm, int* perr, 
...) {
20 MPI_Comm comm = *pcomm;
…
35 MPIX_Comm_failure_ack(comm);
36 MPIX_Comm_failure_get_acked(comm, &group_f);
37 MPI_Group_size(group_f, &nf);
38 MPI_Error_string(err, errstr, &len);
39 printf("Rank %d / %d: Notified of error %s. %d found
dead: { ",
40 rank, size, errstr, nf);
41 
42     ranks_gf = (int*)malloc(nf * sizeof(int));
43     ranks_gc = (int*)malloc(nf * sizeof(int));
44     MPI_Comm_group(comm, &group_c);
45     for(i = 0; i < nf; i++)
46         ranks_gf[i] = i;                                                                                                  
47     MPI_Group_translate_ranks(group_f, nf, ranks_gf,
48                               group_c, ranks_gc);
49     for(i = 0; i < nf; i++)
50         printf("%d ", ranks_gc[i]);
51     printf("}\n");
52 }

Still in 2.errhandler.c

Move the “mark” in the 
known failures list

Get the group of marked 
failed processes



Who caused the error

44

…
19 static void verbose_errhandler(MPI_Comm* pcomm, int* perr, 
...) {
20 MPI_Comm comm = *pcomm;
…
35 MPIX_Comm_failure_ack(comm);
36 MPIX_Comm_failure_get_acked(comm, &group_f);
37 MPI_Group_size(group_f, &nf);
38 MPI_Error_string(err, errstr, &len);
39 printf("Rank %d / %d: Notified of error %s. %d found
dead: { ",
40 rank, size, errstr, nf);
41 
42 ranks_gf = (int*)malloc(nf * sizeof(int));
43 ranks_gc = (int*)malloc(nf * sizeof(int));
44 MPI_Comm_group(comm, &group_c);
45 for(i = 0; i < nf; i++)
46 ranks_gf[i] = i;                                                                                                        
47 MPI_Group_translate_ranks(group_f, nf, ranks_gf,
48 group_c, ranks_gc);
49 for(i = 0; i < nf; i++)
50 printf("%d ", ranks_gc[i]);
51 printf("}\n");
52 }

Still in 2.errhandler.c

Move the “mark” in the 
known failures list

Get the group of marked 
failed processes

Translate the failed group 
member’s ranks, in comm



Insulation from irrelevant failures

Can you guess what happens? 

45

25 double myvalue, hisvalue=NAN;
…
36 myvalue = rank/(double)size;
37 if( 0 == rank%2 )
38 peer = ((rank+1)<size)? rank+1: MPI_PROC_NULL;
39 else
40 peer = rank-1;
41 
42 if( rank == (size/2) ) raise(SIGKILL);
43 /* exchange a value between a pair of two consecutive
44 * odd and even ranks; not communicating with anybody
45 * else. */
46 MPI_Sendrecv(&myvalue, 1, MPI_DOUBLE, peer, 1,
47 &hisvalue, 1, MPI_DOUBLE, peer, 1,
48 MPI_COMM_WORLD, MPI_STATUS_IGNORE);
49 
50 if( peer != MPI_PROC_NULL)
51 printf("Rank %d / %d: value from %d is %g\n",
52 rank, size, peer, hisvalue);

See 3.undisturbed.c

0 1

2 3

4 5

6 7

sendrecv

8 9



Continuing through errors
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Resilience Extensions for MPI: ULFM
ULFM provides targeted interfaces to empower recovery strategies with adequate options to restore 
communication capabilities and global consistency, at the necessary levels only.

Sequoia AMG is an unstructured physics mesh application with a complex 
communication pattern that employs both point-to-point and collective 
operations. Its failure free performance is unchanged whether it is deployed 
with ULFM or normal Open MPI. 

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes 
message test. The connectivity and bandwidth between rank 0 and rank 1 
are unaffected by failure handling activities at rank 2.

CONTINUE ACROSS ERRORS

In ULFM, failures do not alter the state of MPI communicators. 
Point-to-point operations can continue undisturbed between 
non-faulty processes. ULFM imposes no recovery cost on simple 
communication patterns that can proceed despite failures. 

GROUP EXCEPTIONS

Consistent reporting of failures would add an unacceptable 
performance penalty. In ULFM, errors are raised only at ranks where 
an operation is disrupted; other ranks may still complete their 
operations.  A process can use MPI_[Comm,Win,File]_revoke to 
propagate an error notification on the entire group, and could, for 
example, interrupt other ranks to join a coordinated recovery. 

COLLECTIVE OPERATIONS 

Allowing collective operations to operate on damaged MPI objects 
(Communicators, RMA windows or Files) would incur unacceptable 
overhead. The MPI_Comm_shrink routine builds a replacement 
communicator, excluding failed processes, which can be used to 
resume collective communications, spawn replacement processes, 
and rebuild RMA Windows and Files. 
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• Error notifications do not break MPI
• App can continue to communicate on the communicator
• More errors may be raised if the op cannot complete (typically, most collective 

ops are expected to fail), but p2p between non-failed processes works

• In this Master-Worker example, we can continue 
w/o recovery!
• Master sees a worker failed
• Resubmit the lost work unit onto another worker
• Quietly continue



Insulation from irrelevant failures

Can you guess what happens? 

47

25 double myvalue, hisvalue=NAN;
…
36 myvalue = rank/(double)size;
37 if( 0 == rank%2 )
38 peer = ((rank+1)<size)? rank+1: MPI_PROC_NULL;
39 else
40 peer = rank-1;
41 
42 if( rank == (size/2) ) raise(SIGKILL);
43 /* exchange a value between a pair of two consecutive
44 * odd and even ranks; not communicating with anybody
45 * else. */
46 MPI_Sendrecv(&myvalue, 1, MPI_DOUBLE, peer, 1,
47 &hisvalue, 1, MPI_DOUBLE, peer, 1,
48 MPI_COMM_WORLD, MPI_STATUS_IGNORE);
49 
50 if( peer != MPI_PROC_NULL)
51 printf("Rank %d / %d: value from %d is %g\n",
52 rank, size, peer, hisvalue);

See 3.undisturbed.c

0 1

2 3

4 5

6 7

sendrecvbash$ $ULFM_PREFIX/bin/mpirun -am ft-enable-mpi -np 10 ex0.5.undisturbed 
Rank 0 / 10: value from 1 is 0.1
Rank 1 / 10: value from 0 is 0
Rank 3 / 10: value from 2 is 0.2
Rank 2 / 10: value from 3 is 0.3
Rank 6 / 10: value from 7 is 0.7
Rank 7 / 10: value from 6 is 0.6
Rank 9 / 10: value from 8 is 0.8
Rank 8 / 10: value from 9 is 0.9
Rank 4 / 10: Notified of error MPI_ERR_PROC_FAILED: Process Failure. 1 found dead: { 5 }
Rank 4 / 10: value from 5 is nan

Sendrecv failed at rank 
4 (5 is dead)

Value not updated!

Sendrecv between pairs of 
live processes complete w/o 
error. Can post more, it will 

work too!



What [didn’t] caused the error?

• When a sender fails
• The corresponding receive cannot 

complete properly anymore
• If we want to handle the failure, that 

particular recv must be interrupted

• All MPI operations must complete 
(possibly in error) when a failure 
prevents their normal completion

• Recv from non failed processes 
should complete normally

48

13 #include <mpi.h>
14 #include <mpi-ext.h>
…  /* we use the same error handler as before */
68 if( rank == 0 ) {
69 raise(SIGKILL);
70 MPI_Send(&rank, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
71 } else {
72 rc = MPI_Recv(&unused, 1, MPI_INT, rank - 1, 0, MPI_COMM_WORLD, &status);
73 if( (MPI_SUCCESS == rc) && (rank < (size - 1)) )
74 MPI_Send(&unused, 1, MPI_INT, rank + 1, 0, MPI_COMM_WORLD);
75 }
76 printf("Rank %d/%d leaving (after receiving %d)\n", rank, size, unused);…

See ex0.8.recv_deadlock.c

MPIX_ERR_PROC_FAILED on rank 1. No 
further propagation of the data.

Assume the process dies before 
sending the message



STABILIZING AFTER AN ERROR
Lets keep it neat and tidy

49



Regrouping for Plan B 

• P1 fails
• P2 raises an error and stop Plan A to enter application recovery 

Plan B
• but P3..Pn are stuck in their posted recv
• P2 can unlock them with Revoke J
• P3..Pn join P2 in the recovery

50

2. NON-UNIFORM FAILURE KNOWLEDGE
This section discusses the rationale behind the proposed

design that justifies the introduction of the Revoke opera-
tion. We take the perspective of the performance conscious
MPI implementor, and analyze the unacceptable overhead
resulting from requiring uniformity of failure knowledge. We
then present the issues that arise when this requirement is
dropped, and the modus-operandi of the Revoke interface to
resolve them. The proposed design does indeed permit min-
imal overhead on failure free performance, as has been illus-
trated by the implementation presented in [7]. A more gen-
eral presentation of the ulfm interface can be found in [6].

2.1 Failure Detection
Failure detection has proven to be a complex but crucial

area of fault tolerance research. Although in the most ad-
verse hypothesis of a completely asynchronous system, fail-
ures (even simple processes crash, as we consider here) are
intractable in theory [17], the existence of an appropriate
failure detector permits resolving most of the theoretical
impossibilities [11]. However, requiring complete awareness
(thus active monitoring) of failures of every process by every
other process would generate an immense amount of system
noise (from heartbeat messages injected into the network
and the respective treatments on the computing resources
to respond to them), and it is known that MPI communi-
cation performance is very sensitive to system noise [23].
Fortunately, processes that are not trying to communicate
with a dead process do not need, a priori, to be aware of
its failure, as their operations are with alive processors and
therefore deadlock-free. As a consequence, failure detection
in ulfm only requires to detect failures of processes that are
direct partners in a communication operation.

2.2 Local versus Uniform Error Reporting
Another natural preconception is to consider that detec-

tion of failures at any rank results in MPI automatically
altering the state of all communication objects in which the
associated process appears (i.e. communicators, windows,
etc.). In such a model, it is understood that the failure
“damages”the communication object and renders it inappro-
priate for further communications. However, a complication
is hidden in such an approach: the state of MPI communi-
cation objects is the aggregate state of individual views by
each process of the distributed system. As failure aware-
ness is not expected to be global, the implementation would
then require internal and asynchronous propagation of fail-
ure detection, again, a process that is prone to introduce jit-
ter. Furthermore, some recovery patterns (typical in PDE
solvers [1], as an example) do not require advanced, nor
collective, corrective actions and can continue between non-
failed processes on the unmodified communication object.
As a consequence, ulfm never automatically modifies the
state of communication objects. Even if it contains failed
processes, a communicator remains a valid communication
object, until explicitly required. Therefore, error reporting
is not intended to indicate that a process failed, but to indi-
cate that an operation cannot deliver the normal semantic
at the local rank: when a failure happened, but an MPI
operation can proceed without disruption, it completes nor-
mally; when the failed process is supposed to participate in
the result of the operation, it is obviously impossible for the
operation to succeed, and an appropriate error is returned.

P1

P2

P3

Pn
Recv(Pn-1)

Recv(P1)

Recv(P[3:n]): Revoked

Recv(P1): Failed
P2 calls Revoke

Plan A Plan B

Recovery

Figure 1: The transitive communication pattern in

plan A must be interrupted before any process can

switch to the recovery communication pattern plan
B. By revoking the communication context, P2 en-

sures that all possibly unmatched operations in plan
A, which could provoke deadlocks, are interrupted.

Errors can then be captured by the application by setting
the appropriate MPI_ERRHANDLER.
An additional criterion to consider is that some MPI op-

erations are collective, or have a matching call at some other
process (e.g. Send/Recv). Convenience would call for the
same error be returned uniformly at all ranks that partici-
pated in the communication. This would easily permit track-
ing the global progress of the application (and then infer a
consistent, synchronized recovery point). However, the per-
formance consequences are dire, as it requires that every
communication concludes with an agreement operation be-
tween its participants in order to determine the global suc-
cess or failure of the communication, as viewed by each pro-
cess. Such an operation cannot be possibly achieved in less
than the cost of an AllReduce, even without accounting for
the cost of actually tolerating failures during the operation,
and would thus impose an enormous overhead on communi-
cation. In regard to the goal of maintaining an unchanged
level of performance, it is clearly unacceptable to double,
at best, the cost of all latency bound communication opera-
tions, especially when no failure has occurred. Furthermore,
it is already customary for MPI operations to have a local
only semantic, for example, when an MPI_REDUCE completes
at a non-root process, there is no guarantee that the root
has received the result of the collective operation yet. The
semantic only specifies that when the operation completes,
the local input bu↵er can be reused.
As a consequence, in ulfm, the reporting of errors has a lo-

cal operation semantic: the local completion status (in error,
or successfully) cannot be used to assume if the operation
has failed or succeeded at other ranks. In many applications,
this uncertainty is manageable, because the communication
pattern is simple enough. In some cases, however, the com-
munication pattern does not allow such flexibility, and the
application thereby requires an operation to resolve that un-
certainty, as described below.

2.3 Dependencies Between Processes
If the communication pattern is complex, the occurrence

of failures has the potential to deeply disturb the application
and prevent an e↵ective recovery from being implemented.
Consider the example in Figure 1: as long as no failure oc-
curs, the processes are communicating in a point-to-point
pattern (called plan A). Process Pk is waiting to receive a
message from Pk�1, then sends a message to Pk+1 (when



Regrouping for Plan B

• What needs to be added here to fix this 
program?

51

56 /* Assign left and right neighbors to be rank-1 and rank+1
57 * in a ring modulo np */
58 left = (np+rank-1)%np;
59 right  = (np+rank+1)%np;
60 
61 for( i = 0; i < 10; i++ ) {
…
70 /* At every iteration, a process receives from it's 'left' neighbor
71 * and sends to 'right' neighbor (ring fashion, modulo np)
72 * ... -> 0 -> 1 -> 2 -> ... -> np-1 -> 0 ... */
73 rc = MPI_Sendrecv( sarray, COUNT, MPI_DOUBLE, right, 0,
74 rarray, COUNT, MPI_DOUBLE, left , 0,
75 fcomm, MPI_STATUS_IGNORE );
…
80 if( rc != MPI_SUCCESS ) {
81 /* ???>>> Hu ho, this program has a problem here */
82 goto cleanup;
83 }

See 4.iferror.c



2. NON-UNIFORM FAILURE KNOWLEDGE
This section discusses the rationale behind the proposed

design that justifies the introduction of the Revoke opera-
tion. We take the perspective of the performance conscious
MPI implementor, and analyze the unacceptable overhead
resulting from requiring uniformity of failure knowledge. We
then present the issues that arise when this requirement is
dropped, and the modus-operandi of the Revoke interface to
resolve them. The proposed design does indeed permit min-
imal overhead on failure free performance, as has been illus-
trated by the implementation presented in [7]. A more gen-
eral presentation of the ulfm interface can be found in [6].

2.1 Failure Detection
Failure detection has proven to be a complex but crucial

area of fault tolerance research. Although in the most ad-
verse hypothesis of a completely asynchronous system, fail-
ures (even simple processes crash, as we consider here) are
intractable in theory [17], the existence of an appropriate
failure detector permits resolving most of the theoretical
impossibilities [11]. However, requiring complete awareness
(thus active monitoring) of failures of every process by every
other process would generate an immense amount of system
noise (from heartbeat messages injected into the network
and the respective treatments on the computing resources
to respond to them), and it is known that MPI communi-
cation performance is very sensitive to system noise [23].
Fortunately, processes that are not trying to communicate
with a dead process do not need, a priori, to be aware of
its failure, as their operations are with alive processors and
therefore deadlock-free. As a consequence, failure detection
in ulfm only requires to detect failures of processes that are
direct partners in a communication operation.

2.2 Local versus Uniform Error Reporting
Another natural preconception is to consider that detec-

tion of failures at any rank results in MPI automatically
altering the state of all communication objects in which the
associated process appears (i.e. communicators, windows,
etc.). In such a model, it is understood that the failure
“damages”the communication object and renders it inappro-
priate for further communications. However, a complication
is hidden in such an approach: the state of MPI communi-
cation objects is the aggregate state of individual views by
each process of the distributed system. As failure aware-
ness is not expected to be global, the implementation would
then require internal and asynchronous propagation of fail-
ure detection, again, a process that is prone to introduce jit-
ter. Furthermore, some recovery patterns (typical in PDE
solvers [1], as an example) do not require advanced, nor
collective, corrective actions and can continue between non-
failed processes on the unmodified communication object.
As a consequence, ulfm never automatically modifies the
state of communication objects. Even if it contains failed
processes, a communicator remains a valid communication
object, until explicitly required. Therefore, error reporting
is not intended to indicate that a process failed, but to indi-
cate that an operation cannot deliver the normal semantic
at the local rank: when a failure happened, but an MPI
operation can proceed without disruption, it completes nor-
mally; when the failed process is supposed to participate in
the result of the operation, it is obviously impossible for the
operation to succeed, and an appropriate error is returned.
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P3

Pn
Recv(Pn-1)

Recv(P1)

Recv(P[3:n]): Revoked

Recv(P1): Failed
P2 calls Revoke

Plan A Plan B

Recovery

Figure 1: The transitive communication pattern in

plan A must be interrupted before any process can

switch to the recovery communication pattern plan
B. By revoking the communication context, P2 en-

sures that all possibly unmatched operations in plan
A, which could provoke deadlocks, are interrupted.

Errors can then be captured by the application by setting
the appropriate MPI_ERRHANDLER.
An additional criterion to consider is that some MPI op-

erations are collective, or have a matching call at some other
process (e.g. Send/Recv). Convenience would call for the
same error be returned uniformly at all ranks that partici-
pated in the communication. This would easily permit track-
ing the global progress of the application (and then infer a
consistent, synchronized recovery point). However, the per-
formance consequences are dire, as it requires that every
communication concludes with an agreement operation be-
tween its participants in order to determine the global suc-
cess or failure of the communication, as viewed by each pro-
cess. Such an operation cannot be possibly achieved in less
than the cost of an AllReduce, even without accounting for
the cost of actually tolerating failures during the operation,
and would thus impose an enormous overhead on communi-
cation. In regard to the goal of maintaining an unchanged
level of performance, it is clearly unacceptable to double,
at best, the cost of all latency bound communication opera-
tions, especially when no failure has occurred. Furthermore,
it is already customary for MPI operations to have a local
only semantic, for example, when an MPI_REDUCE completes
at a non-root process, there is no guarantee that the root
has received the result of the collective operation yet. The
semantic only specifies that when the operation completes,
the local input bu↵er can be reused.
As a consequence, in ulfm, the reporting of errors has a lo-

cal operation semantic: the local completion status (in error,
or successfully) cannot be used to assume if the operation
has failed or succeeded at other ranks. In many applications,
this uncertainty is manageable, because the communication
pattern is simple enough. In some cases, however, the com-
munication pattern does not allow such flexibility, and the
application thereby requires an operation to resolve that un-
certainty, as described below.

2.3 Dependencies Between Processes
If the communication pattern is complex, the occurrence

of failures has the potential to deeply disturb the application
and prevent an e↵ective recovery from being implemented.
Consider the example in Figure 1: as long as no failure oc-
curs, the processes are communicating in a point-to-point
pattern (called plan A). Process Pk is waiting to receive a
message from Pk�1, then sends a message to Pk+1 (when

Regrouping for Plan B
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77 if( rc != MPI_SUCCESS ) {
78 /* Ok, some error occurred, force other processes to exit the loop
79 * because when I am leaving, I will not match the sendrecv, and
80 * that would cause them to deadlock */
81 MPIX_Comm_revoke( fcomm );
82 goto cleanup;
83 } See a4.iferror.c



More on non-uniform error reporting

• Are all processes going to report an error ?
• Is any process going to display the message line 

41 ?

53

35 value = rank/(double)size;
36 
37 if( rank == (size/4) ) raise(SIGKILL);
38 MPI_Bcast(&value, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
39 
40 if( value != 0.0 ) {
41 printf("Rank %d / %d: value from %d is wrong: %g\n",
42 rank, size, 0, value);
43 }

See 5.err_coll.c

Bcast from 0 is 
disrupted by a 

failure



More on non-uniform error reporting

• Are all processes going to report an error ?
• Is any process going to display the message line 

41 ?
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35 value = rank/(double)size;
36 
37 if( rank == (size/4) ) raise(SIGKILL);
38 MPI_Bcast(&value, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
39 
40 if( value != 0.0 ) {
41 printf("Rank %d / %d: value from %d is wrong: %g\n",
42 rank, size, 0, value);
43 }

See 5.err_coll.c

Bcast from 0 is 
disrupted by a 

failure

bash$ $ULFM_PREFIX/bin/mpirun -am ft-enable-mpi -np 5 ex0.7.report_nonuniform -v 
Rank 3 / 5: Notified of error MPI_ERR_PROC_FAILED: Process Failure. 1 found dead: 
{ 1 }
Rank 3 / 5: value from 0 is wrong: 0.6

0 is the root, it 
sends to 1, but 
doesn’t see the 

failure of 1

MPI_Bcast internally uses 
a binomial tree topology

3 (a leaf) was supposed to 
receive from 1…

Bcast failed at rank 3, 
value has not been 

updated!



Who caused the error

• Are all ranks going to trigger the error handler?
• For those that do, will they all print the same thing?

55

31 MPI_Comm_set_errhandler(MPI_COMM_WORLD,
32 errh);
33 
34 if( rank > (size/2) ) raise(SIGKILL);
35 MPI_Barrier(MPI_COMM_WORLD);

Try ex0.4.report_many

Same program, but we 
inject more failures…



Who caused the error

• Are all ranks going to trigger the error handler?
• For those that do, will they all print the same thing?

56

31 MPI_Comm_set_errhandler(MPI_COMM_WORLD,
32 errh);
33 
34 if( rank > (size/2) ) raise(SIGKILL);
35 MPI_Barrier(MPI_COMM_WORLD);

Try ex0.4.report_many

Same program, but we 
inject more failures…

bash$ $ULFM_PREFIX/bin/mpirun -am ft-enable-mpi -np 5 ex0.4.report_many -v 
Rank 2 / 5: Notified of error MPI_ERR_PROC_FAILED: Process Failure. 1 found dead: { 
4 }
Rank 1 / 5: Notified of error MPI_ERR_PROC_FAILED: Process Failure. 2 found dead: { 
3 4 }
Rank 0 / 5: Notified of error MPI_ERR_PROC_FAILED: Process Failure. 2 found dead: { 
4 3 }

(it may take several trials to see it at small scale,
at large scale, it’s almost all the time…)

All survivors reported an 
error, but not necessarily 

about the same failed 
ranks, or not seen in the 

same order



Issue with communicator creation

• MPI_Comm_dup (for example) is a collective
• Like MPI_Bcast, it may raise an error at some rank and not others
• When rank 0 sees MPI_ERR_PROC_FAILED, newcomm is not created correctly!
• At the same time, rank 2 creates newcomm correctly
• If rank 2 posts an operation with 0, this operation cannot complete (0 cannot post the 

matching send, it  doesn’t have the newcomm)
• Deadlock!
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rc=F,newcomm=???

rc=S
rc=S

0

1

2 Recv(src=0, newcomm)

3

MPI_Comm_dup w/failure at rank 1 during the operation



Safe communicator creation

• Solution: MPI_Comm_agree
• After ft_comm_dup,  either all procs have created newcomm, or all procs

have returned MPI_ERR_PROC_FAILED
• Global state is consistent in all cases
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20 /* Performs a comm_dup, returns uniformely MPIX_ERR_PROC_FAILED or
21 * MPI_SUCCESS */
22 int ft_comm_dup(MPI_Comm comm, MPI_Comm *newcomm) {
23 int rc;
24 int flag;
25 
26 rc = MPI_Comm_dup(comm, newcomm);
27 flag = (MPI_SUCCESS==rc);
28 MPIX_Comm_agree(comm, &flag);
29 if( !flag ) {
30 if( rc == MPI_SUCCESS ) {
31 MPI_Comm_free(newcomm);
32 rc = MPIX_ERR_PROC_FAILED;
33 }
34 }
35 return rc;
36 }

See 6.err_comm_dup.c



Benefit of safety separation
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20 /* Create two communicators, representing a PxP 2D grid of
21 * the processes. Either return MPIX_ERR_PROC_FAILED at all ranks,
22 * then no communicator has been created, or MPI_SUCCESS and all 
23  * communicators have been created, at all ranks. */
24 int ft_comm_grid2d(MPI_Comm comm, int p, MPI_Comm *rowcomm, MPI_Comm
*colcomm) {
…
30 rc1 = MPI_Comm_split(comm, rank%p, rank, rowcomm);
31 rc2 = MPI_Comm_split(comm, rank/p, rank, colcomm);
32 flag = (MPI_SUCCESS==rc1) && (MPI_SUCCESS==rc2);
33 MPIX_Comm_agree(comm, &flag);
34 if( !flag ) {
35 if( rc1 == MPI_SUCCESS ) {
36 MPI_Comm_free(rowcomm);
37 }
38 if( rc2 == MPI_SUCCESS ) {
39 MPI_Comm_free(colcomm);
40 }
41 return MPIX_ERR_PROC_FAILED;
42 }
43 return MPI_SUCCESS;
44 }

• PxP 2D process grid
• A process appears in two 

communicators
• A row communicator
• A column communicator

• We Agree only once
• Better amortization of the cost 

over multiple operationsSee 7.err_comm_grid2d



Dealing with MPI_ANY_SOURCE

• If the recv uses ANY_SOURCE:
• Any failure in the comm is potentially a 

failure of the matching sender!
• The recv MUST be interrupted
• Interrupting non-blocking ANY_SOURCE 

could change matching order…
• New error code 

MPIX_ERR_PROC_FAILED_PENDING: the 
operation is interrupted by a process 
failure, but is still pending

• If the application knows the receive is 
safe, and the matching order respected, 
the pending operation can be waited 
upon (otherwise MPI_Cancel)
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36     if( 0 != rank ) { 
37 MPI_Send(&rank, 1, MPI_INT, 0, 1, MPI_COMM_WORLD);

 38     } 
 39     else { 
 40         printf("Recv(ANY) test\n"); 
 41         for(i = 1; i < size-nf; ) { 
42 rc = MPI_Recv(&unused, 1, MPI_INT, MPI_ANY_SOURCE, 1, 
MPI_COMM_WORLD, &status);
 43             if( MPI_SUCCESS == rc ) { 
44 printf("Received from %d during recv %d\n", unused, i);

 45                 i++; 
 46             } 
 47             else { 

See 8.err_any_source.c

MPIX_ERR_PROC_FAILED on every node 
posting an ANY_SOURCE. 

Assume a process dies before 
sending the message

No specified source, the 
failure detection is 

homogeneous



Error Insulation
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21 int main(int argc, char *argv[]) {
24 MPI_Comm half_comm;
…
35 /* Create 2 halfcomms, one for the low ranks, 1 for the high ranks */
36 MPI_Comm_split(MPI_COMM_WORLD, (rank<(size/2))? 1: 2, rank, &half_comm);
37 
38 if( rank == 0 ) raise(SIGKILL);
39 MPI_Barrier(half_comm);
40 
41 /* Even when half_comm contains failed processes, we call MPI_Comm_free
42 * to give an opportunity for MPI to clean the ressources. */
43 MPI_Comm_free(&half_comm);

See 9.err_insulation.c

Half_comm inherits the error handler 
from MPI_COMM_WORLD



Interlude: MPI_Comm_split
• MPI_COMM_SPLIT( comm, color, key, newcomm )

• Color : control of subset assignment
• Key : sort key to control rank assignment

rank 0 1 2 3 4 5 6 7 8 9

process A B C D E F G H I J

color 0 ^ 3 0 3 0 0 5 3 ^

key 3 1 2 5 1 1 1 2 1 0

3 different colors => 3 communicators
1. {A, D, F, G} with sort keys {3, 5, 1, 1} =>  {F, G, A, D}
2. {C, E, I} with sort keys {2, 1, 1}           =>  {E, I, C}
3. {H} with sort key {2}                          =>  {H}
B and J get MPI_COMM_NULL as they provide an undefined color (MPI_UNDEFINED)



More Insulation
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21 int main(int argc, char *argv[]) {
24 MPI_Comm half_comm;
…
35 /* Create 2 halfcomms, one for the low ranks, 1 for the high ranks */
36 MPI_Comm_split(MPI_COMM_WORLD, (rank<(size/2))? 1: 2, rank, &half_comm);
37 
38 if( rank == 0 ) raise(SIGKILL);
39 MPI_Barrier(half_comm);
40 
41 /* Even when half_comm contains failed processes, we call MPI_Comm_free
42 * to give an opportunity for MPI to clean the ressources. */
43 MPI_Comm_free(&half_comm);

See 9.insulation.c

5 6 7 8 9 

Low ranks half_comm:
What will happen?

High ranks half_comm:
What will happen?

1 2 3 4 



More Insulation
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21 int main(int argc, char *argv[]) {
24 MPI_Comm half_comm;
…
35 /* Create 2 halfcomms, one for the low ranks, 1 for the high ranks */
36 MPI_Comm_split(MPI_COMM_WORLD, (rank<(size/2))? 1: 2, rank, &half_comm);
37 
38 if( rank == 0 ) raise(SIGKILL);
39 MPI_Barrier(half_comm);
40 
41 /* Even when half_comm contains failed processes, we call MPI_Comm_free
42 * to give an opportunity for MPI to clean the ressources. */
43 MPI_Comm_free(&half_comm);

See 9.insulation.c

1 2 3 4 5 6 7 8 9 

$ $ULFM_PREFIX/bin/mpirun -am ft-enable-mpi -np 10 ex0.6.undisturbed2
Rank 1 / 5: Notified of error MPI_ERR_PROC_FAILED: Process Failure. 1 found dead: 
{ 0 }
Rank 2 / 5: Notified of error MPI_ERR_PROC_FAILED: Process Failure. 1 found dead: 
{ 0 }
Rank 4 / 5: Notified of error MPI_ERR_PROC_FAILED: Process Failure. 1 found dead: 
{ 0 }
Rank 3 / 5: Notified of error MPI_ERR_PROC_FAILED: Process Failure. 1 found dead: 
{ 0 }

Low ranks half_comm
has failed process, we 

free it anyway

High ranks half_comm has 
no failure, it works J



FIXING THE WORLD
Can we fix it? Yes we can!

65



Full capacity recovery

• After a Revoke, our original comm is unusable
• We can Shrink: that create a new comm, but smaller

• Can be used to do collective and p2p operations, fully functional

• Some application need to restore a world the same size
• And on top of it, they want the same rank mapping
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Resilience Extensions for MPI: ULFM
ULFM provides targeted interfaces to empower recovery strategies with adequate options to restore 
communication capabilities and global consistency, at the necessary levels only.

Sequoia AMG is an unstructured physics mesh application with a complex 
communication pattern that employs both point-to-point and collective 
operations. Its failure free performance is unchanged whether it is deployed 
with ULFM or normal Open MPI. 

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes 
message test. The connectivity and bandwidth between rank 0 and rank 1 
are unaffected by failure handling activities at rank 2.

CONTINUE ACROSS ERRORS

In ULFM, failures do not alter the state of MPI communicators. 
Point-to-point operations can continue undisturbed between 
non-faulty processes. ULFM imposes no recovery cost on simple 
communication patterns that can proceed despite failures. 

GROUP EXCEPTIONS

Consistent reporting of failures would add an unacceptable 
performance penalty. In ULFM, errors are raised only at ranks where 
an operation is disrupted; other ranks may still complete their 
operations.  A process can use MPI_[Comm,Win,File]_revoke to 
propagate an error notification on the entire group, and could, for 
example, interrupt other ranks to join a coordinated recovery. 

COLLECTIVE OPERATIONS 

Allowing collective operations to operate on damaged MPI objects 
(Communicators, RMA windows or Files) would incur unacceptable 
overhead. The MPI_Comm_shrink routine builds a replacement 
communicator, excluding failed processes, which can be used to 
resume collective communications, spawn replacement processes, 
and rebuild RMA Windows and Files. 
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Respawning the deads

• Avoid the cost of 
having idling spares
• We use MPI_Comm_spawn to 

launch new processes
• We insert them with the right 

rank in a new “world”
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143 int main( int argc, char* argv[] ) {
…
157 /* Am I a spare ? */
158 MPI_Comm_get_parent( &world );
159 if( MPI_COMM_NULL == world ) {
160 /* First run: Let's create an initial world,
161 * a copy of MPI_COMM_WORLD */
162 MPI_Comm_dup( MPI_COMM_WORLD, &world );
…
167 } else {
168 /* I am a spare, lets get the repaired world */
169 MPIX_Comm_replace( MPI_COMM_NULL, &world );
…
174 goto joinwork;
175 }

Resilience Extensions for MPI: ULFM
ULFM provides targeted interfaces to empower recovery strategies with adequate options to restore 
communication capabilities and global consistency, at the necessary levels only.

Sequoia AMG is an unstructured physics mesh application with a complex 
communication pattern that employs both point-to-point and collective 
operations. Its failure free performance is unchanged whether it is deployed 
with ULFM or normal Open MPI. 

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes 
message test. The connectivity and bandwidth between rank 0 and rank 1 
are unaffected by failure handling activities at rank 2.

CONTINUE ACROSS ERRORS

In ULFM, failures do not alter the state of MPI communicators. 
Point-to-point operations can continue undisturbed between 
non-faulty processes. ULFM imposes no recovery cost on simple 
communication patterns that can proceed despite failures. 

GROUP EXCEPTIONS

Consistent reporting of failures would add an unacceptable 
performance penalty. In ULFM, errors are raised only at ranks where 
an operation is disrupted; other ranks may still complete their 
operations.  A process can use MPI_[Comm,Win,File]_revoke to 
propagate an error notification on the entire group, and could, for 
example, interrupt other ranks to join a coordinated recovery. 

COLLECTIVE OPERATIONS 

Allowing collective operations to operate on damaged MPI objects 
(Communicators, RMA windows or Files) would incur unacceptable 
overhead. The MPI_Comm_shrink routine builds a replacement 
communicator, excluding failed processes, which can be used to 
resume collective communications, spawn replacement processes, 
and rebuild RMA Windows and Files. 
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MPIX_Comm_replace( comm,*newcomm)

See 10.respawn



Respawn in action: buddy C/R
109 MPI_Comm_get_parent( &parent );
110 if( MPI_COMM_NULL == parent ) {
111 /* First run: Let's create an initial world,
112 * a copy of MPI_COMM_WORLD */
113 MPI_Comm_dup( MPI_COMM_WORLD, &world );
…
116 } else {
117 /* I am a spare, lets get the repaired world */
118 app_needs_repair(MPI_COMM_NULL);
119 }
…
184     setjmp(jmpenv); 
185 while(iteration < max_iterations) {
186 /* take a checkpoint */
187         if(0 == iteration%2) app_buddy_ckpt(world); 
188         iteration++; 
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• Do the operation 
until completion, 
and nobody else 
needs repair

• New spawns 
(obviously) need 
repair

• Function 
“app_needs_repa
ir” reloads 
checkpoints, sets 
the restart 
iteration, etc…

• “app_needs_repa
ir” Called upon 
restart, in the 
error handler, and 
before completion

See 12.buddycr.c



Triggering the Restart
121 static int app_needs_repair(void) {
122 MPI_Comm tmp;
123 MPIX_Comm_replace(world, &tmp);
124 if( tmp == world ) return false;
125 if( MPI_COMM_NULL != world) MPI_Comm_free(&world);
126 world = tmp;
127 app_reload_ckpt(world);
128 /* Report that world has changed and we need to re-execute */
129 return true;
130 }
131 
132 /* Do all the magic in the error handler */
133 static void errhandler_respawn(MPI_Comm* pcomm, int* errcode, ...) {
…

142 if( MPIX_ERR_PROC_FAILED != eclass &&
143 MPIX_ERR_REVOKED != eclass ) {
144 MPI_Abort(MPI_COMM_WORLD, *errcode);
145     } 
146     MPIX_Comm_revoke(*pcomm);                                                                                       
147 if(app_needs_repair()) longjmp(jmpenv, 0);
148 }

69

See 12.buddycr.c



Simple Buddy Checkpoint
49 static int app_buddy_ckpt(MPI_Comm comm) {
50 if(0 == rank || verbose) fprintf(stderr, "Rank %04d: checkpointing to %04d

after iteration %d\n", rank, rbuddy(r ank), iteration);
51 /* Store my checkpoint on my "right" neighbor */
52 MPI_Sendrecv(mydata_array, count, MPI_DOUBLE, rbuddy(rank), ckpt_tag,
53 buddy_ckpt,   count, MPI_DOUBLE, lbuddy(rank), ckpt_tag,

 54                  comm, MPI_STATUS_IGNORE); 
55 /* Commit the local changes to the checkpoints only if successful. */

 56     if(app_needs_repair()) { 
57 fprintf(stderr, "Rank %04d: checkpoint commit was not succesful, 

rollback instead\n", rank);
 58         longjmp(jmpenv, 0); 
 59     } 
60 ckpt_iteration = iteration;
61 /* Memcopy my own memory in my local checkpoint (with datatypes) */
62 MPI_Sendrecv(mydata_array, count, MPI_DOUBLE, 0, ckpt_tag,

 63                  my_ckpt, count, MPI_DOUBLE, 0, ckpt_tag, 
 64 MPI_COMM_SELF, MPI_STATUS_IGNORE); 
65 return MPI_SUCCESS;
66 }

70

See 12.buddycr.c



Inside MPIX_COMM_REPLACE
30 if( comm == MPI_COMM_NULL ) { /* am I a new process? */
31 /* I am a new spawnee, waiting for my new rank assignment
32 * it will be sent by rank 0 in the old world */
33 MPI_Comm_get_parent(&icomm);
35 MPI_Recv(&crank, 1, MPI_INT, 0, 1, icomm, MPI_STATUS_IGNORE);

…
40 }
41 else {
42 /* I am a survivor: Spawn the appropriate number
43 * of replacement
45 /* First: remove dead processes */
46 MPIX_Comm_shrink(comm, &scomm);
47 MPI_Comm_size(scomm, &ns);
48 MPI_Comm_size(comm, &nc);
49 nd = nc-ns; /* number of deads */
50 if( 0 == nd ) {
51 /* Nobody was dead to start with. We are done here */

…
54 return MPI_SUCCESS;
55 }
56 /* We handle failures during this function ourselves... */
57 MPI_Comm_set_errhandler( scomm, MPI_ERRORS_RETURN );
59 rc = MPI_Comm_spawn(gargv[0], &gargv[1], nd, MPI_INFO_NULL,
60 0, scomm, &icomm, MPI_ERRCODES_IGNORE);

71

Same as in spare: new 
guys wait for their rank 
from 0 in the old world

Spawn nd new processes

See 10.respawn



Intercommunicators – P2P

• Intracommunicator • Intercommunicator

On process 0:
MPI_Send( buf, MPI_INT, 1, n, tag, intercomm )

N = 3
N = 3



• And what’s a intercommunicator ?

• MPI_COMM_REMOTE_SIZE(comm, size)
MPI_COMM_REMOTE_GROUP( comm, group)

• MPI_COMM_TEST_INTER(comm, flag)
• MPI_COMM_SIZE, MPI_COMM_RANK return 

the local size respectively rank

Intercommunicators

- some more processes
- TWO groups
- one communicator



Anatomy of a Intercommunicator

a1 a2 a3 a4

b1 b2 b3

Intercommunicator

Group (A)

Group (B)

For any processes from group (A)
• (A) is the local group
• (B) is the remote group

For any processes from group (B)
• (A) is the remote group
• (B) is the local group

It’s not possible to send a 
message to a process in the 
same group using this 
communicator



Inside MPIX_Comm_replace
59 rc = MPI_Comm_spawn(gargv[0], &gargv[1], nd, MPI_INFO_NULL,
60 0, scomm, &icomm, MPI_ERRCODES_IGNORE);
61 flag = (MPI_SUCCESS == rc);                                                                                             
62 MPIX_Comm_agree(scomm, &flag);
63 if( !flag ) {
64 if( MPI_SUCCESS == rc ) {
65 MPIX_Comm_revoke(icomm);
66 MPI_Comm_free(&icomm);
67 }
68 MPI_Comm_free(&scomm);
…
70 goto redo;
71 }

75

Check if spawn worked 
(using the shrink comm)

If not, make the spawnees
abort with MPI_ERR_REVOKE

See 9.respawn

We need to check if spawn succeeded before proceeding further…



Intercommunicators
• MPI_INTERCOMM_MERGE( intercomm, high, intracomm)

• Create an intracomm from the union of the two groups
• The order of processes in the union respect the original one
• The high argument is used to decide which group will be first (rank 0)

a1 a2 a3 a4

b1 b2 b3

high = false

high = true

b1 b2 b3 a1 a2 a3 a4



Respawn 3/3
95 /* Merge the intercomm, to reconstruct an intracomm (we check
96 * that this operation worked before we proceed further) */
97 rc = MPI_Intercomm_merge(icomm, 1, &mcomm);
98 rflag = flag = (MPI_SUCCESS==rc);
99 MPIX_Comm_agree(scomm, &flag);
100 if( MPI_COMM_WORLD != scomm ) MPI_Comm_free(&scomm);
101 MPIX_Comm_agree(icomm, &rflag);
102 MPI_Comm_free(&icomm);
103 if( !(flag && rflag) ) {
…
108 goto redo;
109 }

77

• First agree on the local group (a’s know 
about flag provided by a’s)

• Second agree on the remote group (a’s 
know about flag provided by b’s)

• At the end, all know if both flag and rflag
(flag on the remote side) is good

Merge the icomm
We are back with an intra

Verify that icomm_mege
worked takes 2 

agreements

a1 a2 a3 a4

b1 b2 b3

Group (A)

Group (B)

See 10.respawn



Copy an errhandler

130 /* restore the error handler */
131 if( MPI_COMM_NULL != comm ) {
132 MPI_Errhandler errh;
133 MPI_Comm_get_errhandler( comm, &errh );
134 MPI_Comm_set_errhandler( *newcomm, errh );
135 }

78

• In the old world, newcomm should have the same error 
handler as comm
• We can copy the errhandler function J
• New spawns do have to set the error handler explicitly (no old comm to 

compy it from)

See 10.respawn



Rank Reordering
74 /* remembering the former rank: we will reassign the same
75 * ranks in the new world. */

 76         MPI_Comm_rank(comm, &crank); 
 77         MPI_Comm_rank(scomm, &srank); 
78 /* the rank 0 in the scomm comm is going to determine the
79 * ranks at which the spares need to be inserted. */

 80         if(0 == srank) { 
81 /* getting the group of dead processes:
82 *   those in comm, but not in scomm are the deads */

 83             MPI_Comm_group(comm, &cgrp); 
 84             MPI_Comm_group(scomm, &sgrp); 
85 MPI_Group_difference(cgrp, sgrp, &dgrp);
86 /* Computing the rank assignment for the newly inserted spares 

*/
 87             for(i=0; i<nd; i++) { 
 88                 MPI_Group_translate_ranks(dgrp, 1, &i, cgrp, &drank); 
89 /* sending their new assignment to all new procs */

 90                 MPI_Send(&drank, 1, MPI_INT, i, 1, icomm); 
 91             } 

79

See 11.respawn_reorder



Working with spares
• First use case:

• We deploy with mpirun –np p*q+s, where s is extra processes for recovery
• Upon failure, spare processes join the work communicator

80

73 /* Let's create an initial world, a copy of MPI_COMM_WORLD w/o
74 * the spare processes */
75 spare = (rank>np-SPARES-1)? MPI_UNDEFINED : 1;
76 MPI_Comm_split( MPI_COMM_WORLD, spare, rank, &world );
77 
78 /* Spare process go wait until we need them */
79 if( MPI_COMM_NULL == world ) {
80 do {
81 MPIX_Comm_replace( MPI_COMM_WORLD, MPI_COMM_NULL, &world );
82 } while(MPI_COMM_NULL == world );
83 MPI_Comm_size( world, &wnp );
84 MPI_Comm_rank( world, &wrank );
85 goto joinwork;
86 }

Split the spares out of 
“world”, the work 

communicator

We will define (ourselves) 
MPIX_Comm_replace, a 

function that fix the world

See ex3.0.shrinkspares.c



Working with spares

• A look at what we need to do…
81

19 int MPIX_Comm_replace(MPI_Comm worldwspares, MPI_Comm comm, MPI_Comm
*newcomm) {
…
25 /* First: remove dead processes */
26 MPIX_Comm_shrink(worldwspares, &shrinked);
27 /* We do not want to crash if new failures come... */
28 MPI_Comm_set_errhandler( shrinked, MPI_ERRORS_RETURN );
29 MPI_Comm_size(shrinked, &ns); MPI_Comm_rank(shrinked, &srank);
30 
31 if(MPI_COMM_NULL != comm) { /* I was not a spare before... */
32 /* not enough processes to continue, aborting. */
33 MPI_Comm_size(comm, &nc);
34 if( nc > ns ) MPI_Abort(worldwspares, MPI_ERR_PROC_FAILED);
35 
36 /* remembering the former rank: we will reassign the same
37 * ranks in the new world. */
38 MPI_Comm_rank(comm, &crank);
40 /* >>??? is crank the same as srank ???<<< */
42 } else { /* I was a spare, waiting for my new assignment */
44 }
45 printf("This function is incomplete! The comm is not repaired!\n");

Shrink MPI_COMM_WORLD

See ex3.0.shrinkspares.c



Assigning ranks to spares

• a
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31 if(MPI_COMM_NULL != comm) { /* I was not a spare before... */
…
36 /* remembering the former rank: we will reassign the same
37 * ranks in the new world. */
38 MPI_Comm_rank(comm, &crank);
39 
40 /* the rank 0 in the shrinked comm is going to determine the
41 * ranks at which the spares need to be inserted. */
42 if(0 == srank) {
43 /* getting the group of dead processes:
44 *   those in comm, but not in shrinked are the deads */
45 MPI_Comm_group(comm, &cgrp); MPI_Comm_group(shrinked, &sgrp);
46 MPI_Group_difference(cgrp, sgrp, &dgrp); MPI_Group_size(dgrp, &nd);
47 /* Computing the rank assignment for the newly inserted spares */
48 for(i=0; i<ns-(nc-nd); i++) {
49 if( i < nd ) MPI_Group_translate_ranks(dgrp, 1, &i, cgrp, &drank);
50 else drank=-1; /* still a spare */
51 /* sending their new assignment to all spares */
52 MPI_Send(&drank, 1, MPI_INT, i+nc-nd, 1, shrinked);
53 }
…
55 }
56 } else { /* I was a spare, waiting for my new assignment */
57 MPI_Recv(&crank, 1, MPI_INT, 0, 1, shrinked, MPI_STATUS_IGNORE);
58 }

See ex3.1.shrinkspares_reorder.c



Inserting the spares in world

• a

83

31 if(MPI_COMM_NULL != comm) { /* I was not a spare before... */
…
36 /* remembering the former rank: we will reassign the same
37 * ranks in the new world. */
38 MPI_Comm_rank(comm, &crank);
…
51 /* sending their new assignment to all spares */
52 MPI_Send(&drank, 1, MPI_INT, i+nc-nd, 1, shrinked);
…
56 } else { /* I was a spare, waiting for my new assignment */
57 MPI_Recv(&crank, 1, MPI_INT, 0, 1, shrinked, MPI_STATUS_IGNORE);
58 }
60 /* Split does the magic: removing spare processes and reordering ranks
61 * so that all surviving processes remain at their former place */
62 rc = MPI_Comm_split(shrinked, crank<0?MPI_UNDEFINED:1, crank, newcomm);
… 
67 flag = MPIX_Comm_agree(shrinked, &flag);
68 MPI_Comm_free(&shrinked);
69 if( MPI_SUCCESS != flag ) {
70 if( MPI_SUCCESS == rc ) MPI_Comm_free( newcomm );
71 goto redo;
72 }
73 return MPI_SUCCESS;

Send, Recv or Split could have 
failed due to new failures…
If any new failure, redo it all

See ex3.1.shrinkspares_reorder.c



Transaction-like approaches
• Let’s not focus on the data 

save and restore
• Use the agreement to decide 

when a work unit is valid
• If the agreement succeed the 

work is correctly completed 
and we can move forward

• If the agreement fails restore 
and data and redo the 
computations

• Use REVOKE to propagate 
specific exception every time it 
is necessary (even in the work 
part)

• Exceptions must be bits to be 
able to work with the 
agreement

84

/* save data to be used in the code below */

do {
/* if not original instance restore the data 

*/

/* do some extremely useful work */

/* validate that no errors happened */

} while  (!errors)



Transaction-like approaches
• TRY_BLOCK setup the 

transaction, by setting a 
setjmp point and the main if

• CATCH_BLOCK complete the if 
from the TRY_BLOCK and 
implement the agreement 
about the success of the work 
completion

• END_BLOCK close the code 
block started by the 
TRY_BLOCK

• RAISE revoke the 
communicator and if 
necessary (if not raised from 
the agreement) longjmp at the 
beginning of the TRY_BLOCK 
catching the if

85

#define TRY_BLOCK(COMM, EXCEPTION) \
do { \

int __flag = 0xffffffff; \
__stack_pos++; \
EXCEPTION = 

setjmp(&stack_jmp_buf[__stack_pos]);\
__flag &= ~EXCEPTION; \
if( 0 == EXCEPTION ) {

#define CATCH_BLOCK(COMM)  \
__stack_pos--; \
__stack_in_agree = 1; /* prevent longjmp */ 

\
OMPI_Comm_agree(COMM, &__flag); \
__stack_in_agree = 0; /* enable longjmp */ \

} \
if( 0xffffffff != __flag ) {

#define END_BLOCK() \
} } while (0);

#define RAISE(COMM, EXCEPTION) \
OMPI_Comm_revoke(COMM); \
assert(0 != (EXCEPTION)); \
if(!__stack_in_agree ) \

longjmp( stack_jmp_buf[__stack_pos],
(EXCEPTION) ); /* escape */



Transaction-like approaches
• Skeleton for a 2 level 

transaction with 
checkpoint approach
• Local checkpoint can be used 

to handle soft errors
• Other types of checkpoint can 

be used to handle hard errors
• No need for global checkpoint, 

only save what will be modified 
during the transaction

• Generic scheme that 
can work at any 
depth

86

/* save data1 to be used in the code below 
*/
transaction1:
TRY_BLOCK(MPI_COMM_WORLD, exception) {

/* do some extremely useful work */

/* save data2 to be used in the code 
below */
transaction2:

TRY_BLOCK(newcomm, exception) {

/* do more extremely useful work */

} CATCH_BLOCK(newcomm) {
/* restore data2 for transaction 2 

*/
goto transaction2;

} END_BLOCK()

} CATCH_BLOCK(MPI_COMM_WORLD) {
/* restore data1 for transaction 1 */
goto transaction1;

} END_BLOCK()
Transaction 2

Transaction 1



Transaction-like approaches
• A small example 

doing a simple 
barrier

• We manually kill a 
process by brutally 
calling exit

• What is the correct 
or the expected 
output?

87

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

TRY_BLOCK(MPI_COMM_WORLD, exception) {

int rank, size;

MPI_Comm_dup(MPI_COMM_WORLD, 
&newcomm);

MPI_Comm_rank(newcomm, &rank);
MPI_Comm_size(newcomm, &size);

TRY_BLOCK(newcomm, exception) {

if( rank == (size-1) ) 
exit(0);

rc = MPI_Barrier(newcomm);

} CATCH_BLOCK(newcomm) {
} END_BLOCK()

} CATCH_BLOCK(MPI_COMM_WORLD) {
} END_BLOCK()

Transaction 2

Transaction 1



ULFM: support for all FT types

• You application is SPMD
• Coordinated recovery
• Checkpoint/restart based
• ABFT

• ULFM can rebuild the 
same communicators 
as before the failure!

88

• Your application is moldable
• Parameter sweep
• Master Worker
• Dynamic load balancing

• ULFM can reduce the cost 
of recovery by letting you 
continue to use a 
communicator in limited 
mode (p2p only)

Resilience Extensions for MPI: ULFM
ULFM provides targeted interfaces to empower recovery strategies with adequate options to restore 
communication capabilities and global consistency, at the necessary levels only.

Sequoia AMG is an unstructured physics mesh application with a complex 
communication pattern that employs both point-to-point and collective 
operations. Its failure free performance is unchanged whether it is deployed 
with ULFM or normal Open MPI. 

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes 
message test. The connectivity and bandwidth between rank 0 and rank 1 
are unaffected by failure handling activities at rank 2.

CONTINUE ACROSS ERRORS

In ULFM, failures do not alter the state of MPI communicators. 
Point-to-point operations can continue undisturbed between 
non-faulty processes. ULFM imposes no recovery cost on simple 
communication patterns that can proceed despite failures. 

GROUP EXCEPTIONS

Consistent reporting of failures would add an unacceptable 
performance penalty. In ULFM, errors are raised only at ranks where 
an operation is disrupted; other ranks may still complete their 
operations.  A process can use MPI_[Comm,Win,File]_revoke to 
propagate an error notification on the entire group, and could, for 
example, interrupt other ranks to join a coordinated recovery. 

COLLECTIVE OPERATIONS 

Allowing collective operations to operate on damaged MPI objects 
(Communicators, RMA windows or Files) would incur unacceptable 
overhead. The MPI_Comm_shrink routine builds a replacement 
communicator, excluding failed processes, which can be used to 
resume collective communications, spawn replacement processes, 
and rebuild RMA Windows and Files. 
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Resilience Extensions for MPI: ULFM
ULFM provides targeted interfaces to empower recovery strategies with adequate options to restore 
communication capabilities and global consistency, at the necessary levels only.

Sequoia AMG is an unstructured physics mesh application with a complex 
communication pattern that employs both point-to-point and collective 
operations. Its failure free performance is unchanged whether it is deployed 
with ULFM or normal Open MPI. 

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes 
message test. The connectivity and bandwidth between rank 0 and rank 1 
are unaffected by failure handling activities at rank 2.

CONTINUE ACROSS ERRORS

In ULFM, failures do not alter the state of MPI communicators. 
Point-to-point operations can continue undisturbed between 
non-faulty processes. ULFM imposes no recovery cost on simple 
communication patterns that can proceed despite failures. 

GROUP EXCEPTIONS

Consistent reporting of failures would add an unacceptable 
performance penalty. In ULFM, errors are raised only at ranks where 
an operation is disrupted; other ranks may still complete their 
operations.  A process can use MPI_[Comm,Win,File]_revoke to 
propagate an error notification on the entire group, and could, for 
example, interrupt other ranks to join a coordinated recovery. 

COLLECTIVE OPERATIONS 

Allowing collective operations to operate on damaged MPI objects 
(Communicators, RMA windows or Files) would incur unacceptable 
overhead. The MPI_Comm_shrink routine builds a replacement 
communicator, excluding failed processes, which can be used to 
resume collective communications, spawn replacement processes, 
and rebuild RMA Windows and Files. 
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CONCLUSION

89



Why all these efforts?

• Whatever scenario we are going for our Exascale
platforms the MTBF will just keep shrinking

90

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Exascale platforms (courtesy C. Engelmann & S. Scott)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 6/ 210



So what is the right approach
• Bad news: there might not be A right approach
• An efficient, scalable and portable approach might 

be at the frontier of multiple approaches
• So far the algorithm specific approaches seems 

the most efficient, but they have additional 
requirements from the programming paradigms

• We need fault tolerance support from the 
programming paradigms
• The glue to allow composability if as important as the approaches themselves

• Is ULFM that glue?

91



What is the cost?

• Let’s first look at the ULFM constructs costs
• No modification of the fault-free path in the library
• The rest depend on the application, but now you have 

the tools required to build the corresponding models
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Figure 3: Revoke cost in Barrier depending on the

initiator rank calling MPIX_COMM_REVOKE (6,000 pro-

cesses).

erations posted on commB until the typical latency becomes
similar to pre-Revoke operations on commA.

The collective communication patterns are inherited, with-
out modification, from the Open MPI non-fault tolerant
“tuned” module. The Cray optimized MPI can, in some
instances, achieve higher performance. For the purpose of
our evaluation, the tuned generic implementation, based on
MPI point-to-point message exchanges, is representative of
users’ communication patterns commonly found in typical,
portable HPC applications.

4.2 Initiator Location and Revoke Impact
Figure 3 presents the latency of Barriers on 6,000 pro-

cesses, depending on the rank of the initiator process that
invokes the MPIX_COMM_REVOKE operation. Thanks to the
symmetric nature of the BMG topology, the Revoked Bar-
rier latency is stable and independent of the initiator rank.
One can note that the time to complete a Revoked Bar-
rier is smaller than the time to complete a normal Barrier.
The normal Barrier has a strong synchronizing semantic:
the operation cannot complete before every process has en-
tered the barrier. A Revoked Barrier doesn’t enforce that
synchronization anymore and it can complete locally before
some processes have participated. Instead, the latency of the
Revoked operation denotes the time taken by the Revoke re-
silient broadcast to reach every rank for the first time; this
propagation latency is similar to the cost of a small message
Broadcast.

However, as stated before, when the Revoke notification
has been delivered to every rank, the reliable broadcast has
not terminated yet, and some Revoke token messages have
been freshly injected in the network (at the minimum, the
2log2(n) messages injected by the last rank to deliver the
Revoke notification are still circulating in the network). As

a consequence, the performance of the first post-Revoke col-
lective operation sustains some performance degradation re-
sulting from the network jitter associated with the circula-
tion of these tokens. This performance degradation is mod-
erate, with the latency approximately doubling. The jitter
noise is equally spread on the BMG topology, therefore, the
increased latency of the first (and the much reduced impact
on the 2nd to 5th) Barrier is also independent of the initia-
tors’ rank.
Although after the first post-Revoke Barrier, no new Re-

voke tokens are injected (when the first Barrier of plan B
completes, a Revoke token has been delivered at every rank,
thus every rank has already injected its reliable broadcast
tokens), the absorption of delayed tokens and the lost syn-
chrony resulting from the initial jitter combine to impact
slightly the Barrier performance. After the fifth Barrier (ap-
proximately 700µs), the application is fully resynchronized,
and the Revoke reliable broadcast has terminated, therefore
leaving the application free from observable jitter.

4.3 Scalability
Figure 4 presents the scalability of the Barrier (left) and

AllReduce (right) collective communications in the Revoke
benchmark. The first observation is that the performance
of post-Revoke collective communications follows the same
scalability trend as the pre-Revoke operations, even those
impacted by jitter. In the case of the AllReduce collec-
tive communication, aside from the 1st post-Revoke AllRe-
duce communication, which still exhibit a moderate over-
head from jitter, the 2nd post-Revoke AllReduce is only
mildly impacted and the 3rd AllReduce exhibit no signif-
icant di↵erence from the failure free case, illustrating that
the jitter introduced by the reliable broadcast algorithm has
a lesser impact on this communication pattern. When the
number of processes increases, the impact of jitter —the
di↵erence between the failure-free and the 1st post-Revoke
operation— is almost constant (or slightly decreasing). If
this trend were to continue at larger scales, the impact of
jitter could become asymptotically negligible.
Last, while the implementations of the “tuned” collective

operations di↵er in performance trends on this Cray machine
(for reasons outside of the scope of this work, but rooting in
the internal collective algorithm selection logic being tuned
for the Infiniband network), the performance of the revoked
operation is similar in both cases, illustrating that, as long
as MPI progress is triggered, the propagation latency of the
BMG reliable broadcast is independent from the communi-
cation plan being revoked.

4.4 AllReduce and Message Size
Figure 5 presents the latency of the AllReduce collective

communication when the message size varies. Focusing first
on the cost of the Revoked AllReduce operation, one can ob-
serve that the duration of the operation remains independent
of the message size until the message size increases to 1MB
or more. As the Revoked operation is interrupted before ex-
changing the entire communication volume, this behavior is
expected. For larger message sizes, however, the delivery of
the Revoke notification may be delayed by the granularity
of the ongoing reduction computation; as these computa-
tions are progressing, the MPI progress engine is managing
them with maximum priority, and thus does not consider
incoming fragments for that time duration. As soon as one

(a) ERA versus Log2phases Agreement scal-

ability in the failure-free case.

���

���

���

���

����

����

����

����

�� �� �� �� �� ��

��

����������

��������������������������

��������������������
������������������
�����������������
��������������������������
����������������������

(b) ERA performance depending on the tree

topology.

(c) Post Failure Agreement Cost.

Failed Ranks 0 (root) 4 (child of 0) 16 (node master) 17 (child of 16) 16–31 (full node)

Detecting Agreement 12,659 93,816 80,023 112,414 82,171
Stabilize Agreement 104.9 102 98.9 104.2 117.1
Post-failure Agreement 69.7 75.7 77.1 76.7 85.2

(d) Cost (µs) depending on the role of the failed process in a bin/bin ERA w/o rebalancing, 6000 procs.

Figure 2: Synthetic benchmark performance of the agreement.

resentation, it is implemented just above the Byte Trans-
fer Layer of Open MPI (below the MPI semantic layer):
this enables the reception ofRESULTREQUEST messages
even when outside an MPIX_COMM_AGREE call, as imposed by
the early returning property of the algorithm. Additionally,
based on our prior studies highlighting the fact that local
computations exhibiting linear behaviors dominate the cost,
even in medium scale environments, we have taken extra
steps to ensure that, when possible, all local operations fol-
low a logarithmic time-to-solution.

This implementation was validated using a stress test that
performs an infinite loop of agreements, where any failed
process is replaced with a new process. Failures are injected
by killing random MPI processes with di↵erent frequencies.
A 24h run on 128 processors (16 nodes, 8 cores each, TCP
over Gigabit Ethernet) completed 969,739 agreements suc-
cesfully while tolerating 146,213 failures.

5.1 Agreement Performance
We deploy a synthetic benchmark on the NICS Darter

supercomputer, a Cray XC30 (cascade) machine, to analyze
the agreement latency with and without failures at scale.
We employ the ugni transport layer to exploit the Cray
Aries interconnect, and the sm transport layer for inter-core
communication.

The benchmark calls MPIX_COMM_AGREE in a loop, with fail-
ures injected at controllable iterations and processes. We
consider four types of agreements: failure-free agreements
precede the injection of a failure. The first agreement during
which a failure manifests is the failure detecting agreement;
it returns MPI_ERR_PROC_FAILED per ULFM specification.
One additional stabilizing agreement, or more for complex
failure scenarios, is then necessary to acknowledge the fail-
ure(s), optimize the agreement tree, and return MPI_SUCCESS.
Subsequent post-failure agreements do not experience sup-
plementary failures. For each participant, we collect the

mean duration, and the standard deviation over 32k agree-
ments; the reported mean time is the maximum between the
mean times collected at all processes.

Scalability. In Figure 2a, we present the scalability trend
of ERA when no failures are disturbing the system. We con-
sider two di↵erent agreement implementations, 1) the known
state-of-the-art 2-phase-commit Agreement algorithm pre-
sented in [23], called Log2phases, and 2) our best perform-
ing version of ERA. We also add, for reference, the perfor-
mance of an Allreduce operation that in a failure-free con-
text would have had the same outcome as the agreement.
With the bin/bin topology on the darter machine using one
process per core, thus 16 processes per node, the average
branching degree of non-leaf nodes is 2.125. The ERA and
the Allreduce operations both exhibit a logarithmic trend
when the number of nodes increase, as can be observed by
the close fit (asymptotic standard error of 0.6%) of the log-
arithmic function era(x) = 6.7 log2.125(x). In contrast, the
Log2phases algorithm exhibits a linear scaling with the num-
ber of nodes, despite the expected theoretical bound pro-
posed in [23]. As a result, we stopped testing the perfor-
mance of the Log2phases algorithms at larger scale or under
the non failure-free scenarios.

Communication Topologies. In Figure 2b we compare the
performance of di↵erent architecture-aware versions of the
ERA algorithm. In the flat binary tree, all ranks are orga-
nized in a binary tree, regardless of the hardware locality of
ranks collocated on cores of the same node. In the hierar-
chical methods, one rank represents the node and partici-
pates in the inter-node binary tree; on each node, collocated
ranks are all children of the representing rank in the bin/s-
tar method, or are organized along a node-local binary tree
in the bin/bin method. The flat binary topology ERA and
the Open MPI Allreduce are both hardware locality agnos-



What about the development cost?

• ULFM has a steep learning cost compared with 
system level approaches. But:
• Parallel programming was considered hard a while back. Today it is 

almost mainstream (!)
• Training is key for flatten the learning curve

• ULFM is a building box, most developers are not supposed to use it 
directly
• Instead use domain specific approaches, proposed by the 

domain scientists as a portable library implemented using 
the ULFM constructs

• The development cost should be put in balance 
with the building and ownership cost
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Can we fix C/R with hardware?

• NVRAM ? Hardware level triplication? Hardware 
detection (think ECC++)

• More hardware is not only more expensive but 
it also increases
• The opportunity for failure (the law of big numbers)
• The cost of ownership (energy, and cooling)

• Why not using this extra hardware to improve 
the scalability of the application?
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You have the answer!

• You learned how to model the behavior of your 
application and how to interpret the data

• You learned what you can do if you go outsize 
the box (compose approaches, ULFM, …)

• You know your algorithms and
applications

• We are looking forward to hear
about your successes !
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More info, examples and 
resources available

http://fault-tolerance.org
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