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Getting the hands-on material

 Slides, examples, instructions:
http://fault-tolerance.org/scl17

« Examples direct link:
http://fault-tolerance.org/downloads/tutorial-sc17.tgz
* Run with The ULFM Docker image
http://fault-tolerance.org/ulfm2-docker/

1. Install Docker

2. Docker pull abouteiller/mpi-ft-ulfm
3. source dockervars.sh

4. mpirun -np 10 example
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Backward recovery: C/R

Coordinated checkpoint (possibly with incremental checkpoints)
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* Coordinated checkpoint is the workhorse of k1 today

« 1/0 intensive, significant failure free overhead ®
« Full rollback (1 fails, all rollback) ®
« Can be deployed w/o MPI support ©

« ULFM enables user-level deployment of in-memory,
Buddy-checkpoints, Diskless checkpoint

« Checkpoints stored on other compute nodes
* No |/0 activity (or greatly reduced), full network bandwidth
« Potential for a large reduction in failure free overhead, better restart speed




Uncoordinated C/R

» Checkpoints taken independently

« Based on variants of Message Logging

« ] fails, 1 rollback

« Can be implemented w/o0 a standardized user API

« Benefit from ULFM: implementation becomes portable
across multiple MPI libraries




Forward Recovery

Forward Recovery: Any technique that permit the

application to continue without rollback
Master-Worker with simple resubmission
Iterative methods, Naturally fault tolerant algorithms
- Algorithm Based Fault Tolerance
Replication (the only system level Forward Recovery)

No checkpoint |/O overhead
No rollback, no loss of completed work
May require (sometime expensive, like

replicates) protection/recovery operations,

but still generally more scalable than
checkpoint ©

Often requires in-depths algorithm rewrite (in
contrast to automatic system based C/R) ®
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Application specific forward recovery

» Algorithm specific FT [ " =""""1"
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An API for diverse FT approaches

Coordinated Checkpoint/Restart, Automatic, Naturally Fault Tolerant Applications, Master-Worker,
Compiler Assisted, User-driven Checkpointing, etc. Domain Decomposition, etc.
In-place restart (i.e., without disposing of non-failed processes) Application continues a simple communication pattern,
accelerates recovery, permits in-memory checkpoint ignoring failures
......................................................... )
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User Level Failure Mitigation: a set of MPI interface extensions to
enable MPI programs to restore MPI communication capabilities
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What is the status of FT in MPI 3.0?

» Total denial

« “After an error is detected, the state of MPI is undefined. An MPIl implementation is free to allow MPI
to continue after an error but is not required to do so.“

« Two forms of management

« Return codes: all MPI functions return either MPI_SUCCESS or a specific error code
related to the error class encountered (eg MPI_ERR_ARG)

* Error handlers: a callback automatically triggered by the MPIl implementation before
returning from an MPI
function.




Error Handlers

« Can be attached to all objects allowing data
transfers: communicators, windows and files

 Allow for minimalistic error recovery: the
standard suggests only non-MPI related actions

* All newly created MPI objects inherit the error
handler from their parent

« A global error handler can be specified by associating an error handler to
MPI_COMM_WORLD right after MPI_Init

typedef void MPl_Comm_errhandler_function
(MPl_Comm *, int *, ...);




-—

Summary of existing functions

- MPI_Comm_create_errhandler(errh, errhandler_fct)

» Declare an error handler with the MPI library

« MPI_Comm_set_errhandler(comm, errh)

« Attach a declared error handler to a communicator

* Newly created communicators inherits the error handler that is associated with their parent
« Predefined error handlers:

« MPI_ERRORS_ARE_FATAL (default)
« MPI_ERRORS_RETURN




Requirements for MPI standardization of FT

- Expressive, simple to use

« Support legacy code, backward compatible Application
« Enable users to port their code simply
« Support a variety of FT models and approaches

 Minimal (ideally zero) impact on
failure free performance Chieckpoint/Restart

* No global knowledge of failures

* No supplementary communications to maintain
global state

» Realistic memory requirements

Uniform
Collectives

FAILURE_ACK' | REVOKE |

« Simple to implement SHRINK [ AGREE
« Minimal (or zero) changes to existing functions
« Limited number of new functions VPl

« Consider thread safety when designing the API

icL>or

@thers




Minimal Feature Set for a Resilient MPI

 Failure Notification
« Error Propagation

Error Recove ry CHECKPOINNURIToeN
REStart Gol|EctiVEs Uthers

Not all recovery strategies

Application

require all of these features, e e
that’s why the interface splits

notification, propagation and VPl
recovery.

ULFM is not a recovery strategy, but a minimalistic set of building blocks for
Implementing complex recovery strategies.
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Failure Notification

 MPI stands for scalable parallel applications it would be
unreasonable to expect full connectivity between all peers

» The failure detection and notification
should have a neighboring scope:
only processes involved in a
communication with the failed process
might detect the failure

» But at least one neighbor should be informed anout A lanure

« MPI_Comm_free must free “broken” communicators and
MPI_Finalize must complete despite failures.




Error Propagation

« What is the scope of a failure? Who should be notified about?

« ULFM approach: offer flexibility to allow the library/application
to design the scope of a failure, and to limit the scope of a
fallure to only the needed participants

« eg. What is the difference between a Master/Worker
and a tightly coupled application ?

* In a 2d mesh application how many nodes
should be informed about a failure?




Error Recovery

« What is the right recovery strategy?
« Keep going with the remaining processes?

« Shrink the living processes to form a new consistent
communicator?

« Spawn new processes to take the place of the failed ones?

* Who should be in charge of defining this survival strategy? What
would be the application feedback?




Who should be notified about?

* Pre-made code snippets available
P1
P2
P3

Pn

« Failure Notification
« Error Propagation
« Error Recovery

« Respawn of nodes
« Dataset restoration

T

Problem statement

What is the scope of a failure? o Some gpplications can continue w/o recovery
What actions should be taken?  * S0me applications are maleable

« Shrink creates a new, smaller communicator on which collectives work

« Some applications are not maleable

« Spawn can recreate a “same size” communicator
» Itis easy to reorder the ranks according to the original ordering

Not all recovery strategies

require all of these features,

that’s why the interface should split
notification, propagation and
recovery.

B




Part rationale, part examples

ULFM MPI API, CONTINUING THROUGH ERRORS




Summary of new functions

(comm)
Resumes matching for MPI_ANY_SOURCE

(comm, &group)

» Returns to the user the group of processes acknowledged to have failed

(comm)

— Non-collective collective, interrupts all operations on comm
(future or active, at all ranks) by raising MPI_ERR_REVOKED

(comm, &newcomm)

— Collective, creates a new communicator without failed
processes (identical at all ranks)
(comm, &mask)
— Collective, agrees on the AND value on binary mask,
ignoring failed processes (reliable AllIReduce), and the
return core
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Integration with existing mechanisms

 New error codes to deal with failures

- MPI_ERROR_PROC_FAILED: report that the operation discovered a newly dead process. Returned
from all blocking function, and all completion functions.

« MPI_ERROR_PROC_FAILED_PENDING: report that a non-blocking MPI_ANY_SOURCE potential
sender has been discovered dead.

- MPI_ERROR_REVOKED: a communicator has been declared improper for further communications.
All future communications on this communicator will raise the same error code, with the exception of

a handful of recovery functions

* |s that all?
« Matching order (MPI_ANY_SOURCE), collective communications




Bye bye, world

See 00.noft.c

int main(int argc, char xargvl[])

{
int rank, size;
MPI_ Init( ) );
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size); Injecting a failure
at the highest
( rank == (size-1) ) raise( ); rank processor

MPI_Barrier(MPI_COMM_WORLD);
printf( , rank, size);

MPI_Finalize();

 This program will abort (default error handler)
 What do we need to do to make if fault tolerant?

See gO01.err_returns.c




Bye bye, world, but orderly

int main(int argc, char *argvl[]) See Ol.err_returns.c

{

int rank, size, rc, len; We can get a

MPI_Init( : );
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size); Errors are not
fatal anymore:
return an error
code instead

MPI_Comm_set_errhandler (MPI_COMM_WORLD,
MPI_ERRORS_RETURN) ;

( rank == (size-1) ) raise( ); .
rc = MPI_Barrier(MPI_COMM_WORLD); collect the error code in rc

MPI_Error_string(rc, errstr, &len);
printf(

rank, size, errstr);

All non-faulty
processes
survive and print
the success or
error, as
reported from

MPI_Finalize();

- Using only MPI-2 at the moment ©

MPI_Barrier




Handling errors separately

See g02.err_handler.c
static void verbose_errhandler(MPI_Commx comm, 1ntx err,

char errstr[MPI_MAX_ERROR_STRING];
We can pack all error

MPI_Error_string( xerr, errstr, &len ); management in an

printf( . “error handler”
rank, size, errstr);

main(int argc, char xargv[]) { Create an “errhandler”
object from the C

function, and attach it

MPI_Comm_create_errhandler(verbose_errhandler, to the communicator

MPI _Errhandler errh;

&errh);
MPI_Comm_set_errhandler (MPI_COMM_WORLD,
errh);

MPI_Barrier (MPI_COMM_WORLD) ;
printf( , rank, size);

» Still using only MPI-2 ©




Handling errors separately

See g02.err_handler.c
19 static void verbose_errhandler(MPI_Commx comm, 1ntx err,

21 char errstr[MPI_MAX_ERROR_STRING];

26 MPI_Error_string( xerr, errstr, &len );
27 printf(

28 rank, size, errstr);

29

30

31 i main(int argc, char xargvl[]) {

33 MPI _Errhandler errh;

39 MPI_Comm_create_errhandler(verbose_errhandler,
40 &errh);

41 MPI_Comm_set_errhandler (MPI_COMM_WORLD,

42 errh);

45 MPI_Barrier(MPI_COMM_WORLD); No need to collect rc anymore ©

46 printf( , rank, size);

» Still using only MPI-2 ©




What caused the error?

See 02.err_hander.c

ULFM is an extension to the MPI standard

static void verbose_errhandler(MPI_Commx pcomm, intx perr, ...) {
MPI_Comm comm = xpcomm;

int err = xperr; This is an “MPI error
code”

int .., eclass;

Convert the “error code”

MPI_Error_class(err, &eclass); to an “MPI error class”

( MPIX_ERR_PROC_FAILED != eclass ) {

MPI_Abort(comm, err);

MPIX_ERR_PROC_FAILED: a process
failed, we can deal with it.
Something else: ULFM MPI return the error
but it still may be impossible to recover; in
this app, we abort when that happens

« ULFM defines 3 new error classes:

MPI_ERR_PROC_FAILED « All other errors still have MPI-2
MPI_ERR_PROC_FAILED_PENDING semantic

MPI_ERR_REVOKED
After these errors, MPI can be repaired reported

May or may not be able to continue after it has been




Who caused the error?

 Discovery of failures is local (different processes may know of
different failures)

(comm)

« This local operation gives the users a way to acknowledge all locally notified failures on comm. After the
call, unmatched MPI_ANY_SOURCE receive operations proceed without further raising
MPI_ERR_PROC_FAILED_PENDING due to those acknowledged failures.

(comm, &grp)

« This local operation returns the group grp of processes, from the communicator comm, that have been
locally acknowledged as failed by preceding calls to MPI_COMM_FAILURE_ACK.

« Employing the combination ack/get_acked, a process can obtain
the list of all failed ranks (as seen from its local perspective)




MPI_Comm_failure_get_acked

 Local operation returning the group of failed processes in the
associated communicator that have been locally acknowledged

« Hint: All calls to between a set of
return the same set of failed processes




Who caused the error

Still in 02.err_handler.c

19 static void verbose_errhandler(MPI_Commx pcomm, intx perr,

can) o

20 MPI_Comm comm = xpcomm; Move the “mark” in the
known failures list

35 MPIX_Comm_failure_ack(comm);

36 MPIX_Comm_failure_get_acked(comm, &group_f); Get the group of marked

37 MPI_Group_size(group_f, &nf); .
38 MPI_Error_string(err, errstr, &len); failed processes

39 printf(
40 rank, size, errstr, nf);
41




Who caused the error

Still in 02.err_handler.c

19 static void verbose_errhandler(MPI_Commx pcomm, intx perr,

can) o

20 MPI_Comm comm = xpcomm; Move the “mark” in the
known failures list

35 MPIX_Comm_failure_ack(comm);

36 MPIX_Comm_failure_get_acked(comm, &group_f); Get the group of marked

37 MPI_Group_size(group_f, &nf); .
38 MPI_Error_string(err, errstr, &len); failed processes

39 printf(

40 rank, size, errstr, nf);
41
42 ranks_gf = (intx)malloc(nf % sizeof(int));

43 ranks_gc = (intx)malloc(nf * sizeof(int)); .
44 MPI_Comm_group(comm, &group_c); Translate the failed group

45 for(i = 0; 1 < nf; i++) member’s ranks, in comm

46 ranks_gf[i] = i;

47 MPI_Group_translate_ranks(group_f, nf, ranks_gf,
48 group_c, ranks_gc);

49 for(i = 0; i < nf; i++)

50 printf( , ranks_gclil);
51 printf( );




Insulation from irrelevant failures

, See 03.undisturbed.c
double myvalue, hisvalue=NAN;

sendrecv
myvalue = rank/(double)size;
if( rank%?2 ) : .

= ((rank+1)<size)? rank+1: MPI_PROC_NULL;

rank-1; A

== (size/2) ) raise( ;
—§

MPI_Sendrecv(&myvalue, 1, MPI_DOUBLE, peer, 1, -—>
&hisvalue, 1, MPI_DOUBLE, peer, 1,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

if( peer !'= MPI_PROC_NULL)
printf(
rank, size, peer, hisvalue);

What happens?




Continuing through errors

 Error notifications do not break < In this Master-Worker example, we
MPI can continue w/o recovery!

* App can continue to communicate on the « Master sees a worker failed

communicator « Resubmit the lost work unit onto another worker
« More errors may be raised if the op cannot « Quietly continues

complete (typically, most collective ops are

expected to fail), but p2p between non-failed e Same Story with Stencil pattern!
processes works . Exchange with next neighbor in the same direction
instead

Detected W1
Master
w W=\

W2

. —




Insulation from irrelevant failures

See 03.undisturbed.c

double myvalue, hisvalue=NAN;

myvalue = rank/(double)size;
rank%2 )
= ((rank+1)<size)? rank+1: MPI_PROC_NULL;

= rank-1;

== (size/2) ) raise(

MPI_Sendrecv(&myvalue, 1, MPI_DOUBLE, peer, 1,
&hisvalue, 1, MPI_DOUBLE, peer, 1,
MPT_COMM WORIN __MPT _GCTATLIS _TGNORF) -
bash$ $SULFM_PREFIX/bin/mpirun -np 10 03.undisturbed
Rank O / 10: value from 1is 0.1
Rank 1 / 10: value from O is O

Sendrecv between pairs of

Rank 3 / 10: value from 2 is 0.2 live processes complete w/0

Rank 2 / 10: value from 3 is 0.3 error. Can post more, it will
Rank 6 / 10: value from 7 is 0.7 work too! Sendrecyv failed at rank

Rank 7 / 10: value from 6 is 0.6 .
Rank 9 / 10: value from 8 is 0.8 4 (5 IS dead)
Rank 8 / 10: value from 9 is 0.9 Value not updated!

Rank 4 / 10: Notified of error MPI_ERR_PROC_FAILED: Process Failure. 1 found dead: { 5}
Rank 4 / 10: value from 5 is nan




Dealing with MPI_ANY_SOURCE

See 08.err_any_source.c

(0!=rank ) {
MPI_Send(&rank, 1, MPI_INT, 0, 1, MPI_COMM_WORLD);

Assume a process dies before
{ sending the message

printf( );
(1 =1, 1< size-nf; ) {
rc = MPI_Recv(&unused, 1, MPI_INT, MPI_ANY_SOURCE, 1,

MPI_COMM_WORLD, &status); -
( MPI_SUCCESS == rc ) { No specified source

printf( , unused, 1i);

i++

{




Dealing with MPI_ANY_SOURCE

See 08.err_any_source.c

( 0'!'=rank) {

MPI_Send(&rank, 1, MPI_INT, 0, 1, MPI_COMM_WORLD); .
Assume a process dies before

{ sending the message
printf( );

(1 =1; 1 < size-nf; ) {

rc = MPI_Recv(&unused, 1, MPI_INT, MPI_ANY_SOURCE, 1, No specified source, the

1.,.\+ » . . .
MPI_COMM_WORLD, (&SML;I‘”SSlJ)C'CESS o) g failure detection is

printf( , unused, 1i); homogeneous

1++;

{ MPIX_ERR_PROC_FAILED on every node
posting an ANY_SOURCE.

« If the recv uses ANY_SOURCE: * New error code MPIX_ERR_PROC_FAILED_PENDING:
. Any failure in the comm is potentially a failure of the the operation is interrupted by a process failure, but is
matching sender! still pending
. The recv MUST be interrupted « |f the application knows the receive is safe, and the

matching order respected, the pending operation can

* Interrupting non-blocking ANY_SOURCE could change be waited upon (otherwise MPI_Cancel)

matching order...



MPI_Comm_failure_ack

- Local operations that acknowledge all locally notified failures
« Updates the group returned by MPI_COMM_FAILURE_GET_ACKED

« Unmatched MPI_ANY_SOURCE that would have raised
MPI_ERR_PROC_FAILED or MPI_ERR_PROC_FAILED_PENDING
proceed without further exceptions regarding the acknowledged
failures.

« MPI_COMM _AGREE do not raise MPl_ERR_PROC_FAILED due to
acknowledged failures

* No impact on other MPI calls especially not on collective communications




Dealing with MPI_ANY_SOURCE

See 08.err_any_source.c

41 for(i = 1; i < size-nf; ) {

42 rc = MPI_Recv(&unused, 1, MPI_INT, MPI_ANY_SOURCE, 1,
MPI_COMM_WORLD, &status]):

43 if( MPI_SUCCESS ==—+r¢c.) {

44 printf("Received from =sd—during recv %d\n'", unused, 1i);

45 i++;

46 } MPIX_ERR_PROC_FAILED on every node

47 else { .
48 int eclass; posting an ANY_SOURCE.

49 MPI_Group group_f;

50 MPI_Error_class(rc, &eclass);
51 if( MPIX_ERR_PROC_FAILED != eclass ) { Resumes normal
52 MPI_Abort(MPI_COMM_WORLD, rc);
- \ ANY;SOQRCE
54 MPIX_Comm_failure_ack(MPI_COMM_WORLD); operations
55 MPIX_Comm_failure_get_acked(MPI_COMM_WORLD, &group_f);
56 MPI_Group_size(group_f, &nf);
57 MPI_Group_free(&group_f);
58 printf("Failures detected! %d found so far\n", nf);
59
60
Master
w W= AN
w2 /(\&

Whn
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» “bagoftasks-noft” application < slave_gen.f: worker code

computes the value of Pi - Receive work from the master (line 44)

. i « Compute part of the Pi formula (line 53)
» main.f: basic program structure . |ect a failure (line 70)

o master_gen.f: master COde . Ret.urr? the result to the maste.r (lllne 83) |
. s o » Verify if the master sent the “finish” token (line
« Master will submit "slicestodo” pieces of work 120)

to the workers total
. First send 1 piece of work to each workers (line ® €rrh_blan K.f: error

°7) management

* Receive results from workers (line 74) | | |
+ If work remains to do, submit another round of  ~ 0N @ skeleton, not compiled or invoked in the
’ provided version

work to the workers (line 94)

DIY: Make this code fault tolerant!




What did we learn?

* YOou can write an application that survives process failures
* You can use MPI Error handlers to capture the errors
« MPI Communication can continue between non-failed processes

* You can obtain the list (as per the rank local view) of failed
pProcesses

* You can restore ANY_SOURCE receives with local-only
operations

* You have written an application that continues its computation
when processes fail!




Lets keep it neat and tidy

STABILIZING AFTER AN ERROR
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Summary of new functions

(comm)
* Resumes matching for MPI_ANY_SOURCE
(comm, &group)

* Returns to the user the group of processes acknowledged to have
failed

(comm)

— Non-collective collective, interrupts all operations on comm
(future or active, at all ranks) by raising MPI_ERR_REVOKED

(comm, &newcomm)

— Collective, creates a new communicator without failed
processes (identical at all ranks)

(comm, &mask)

— Collective, agrees on the AND value on binary mask,
ignoring failed processes (reliable AllIReduce), and the
return core
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See q04.if_error.c

(np+rank-1)%np;
(np+rank+1)%np;

i< i ) {

MPI_Sendrecv( sarray, COUNT, MPI_DOUBLE, right, 0,
rarray, COUNT, MPI_DOUBLE, left , 0,
fcomm, MPI_STATUS_IGNORE );

if( rc !'= MPI_SUCCESS ) {

goto cleanup;

* Run this program. What happens?
« Canyou fix it ?




Regrouping for Plan B

Recv(P,): Failed
P, calls Revoke

P1 fails

P2 raises an error and stop Plan A to enter application recovery
Plan B

but P3..Pn are stuck in their posted recv
P2 can unlock them with Revoke ©
P3..Pn join P2 in the recovery




MPI_Comm_revoke

« Communicator level failure propagation

* The revocation of a communicator completes all pending local
operations

« A communicator is revoked either after a local MPI_Comm_revoke or any MPI call raise an exception of
class MPI_ERR_REVOKED

* Unlike any other concept in MPI it is not a collective call but has a
collective scope

« Once a communicator has been revoked all non-local calls are
considered local and must complete by raising MPI_ERR_REVOKED

« Notable exceptions: the recovery functions (agreement and shrink)




Regrouping for Plan B

e p— b

if( rc !'= MPI_SUCCESS ) {

MPIX_Comm_revoke( fcomm );
goto cleanup;

See 04.if_error.c




About non-uniform error reporting

value = rank/(double)size; See 05.err_coll.c

. . Bcast from O is
( rank == (size/4) ) raise( ); .
MPI_ Bcast(&value, 1, MPI_DOUBLE, ©, MPI_COMM_WORLD); disrupted by a
failure

( value != ) {

printf(

rank, size, 0, value);

« What processes are going to report an error ?

* Is any process going to display the message
line 41 ?

« What if we do an Allreduce instead?




About non-uniform error reporting

See 05.err_coll.c

value = rank/(double)size;
Bcast from O is

disrupted by a
failure

( rank == (size/4) ) raise( )
MPI_Bcast(&value, 1, MPI_DOUBLE, ©, MPI_COMM_WORLD);

( value != ) {
printf(
rank, size, 0, value);

 Are all processes going to report an error ?

* [s any process going to display the message line
41 7

bash$ $ULFM_PREFIX/bin/mpirun -np 5 05.err_coll -v
Rank 3./ 5: Notified of error MPI_ERR_PROC_FAILED: Process Failure. 1 found dead:
{1}

Rank 3 / 5+« _value from @ is wrong: 0.6

MPI_Bcast internally uses 0 is the root, it Bcast failed at rank 3,
a binomial tree topology sends to 1, but value has not been
3 (a leaf) was supposed to || doesn’t see the updated!
receive from 1... failure of 1




Issue with communicator creation

rc=F,newcomm="??7?

0]
1
, rc=S
Recv(src=0, newcomm)
, rc=S

MPI_Comm_dup w/failure at rank 1 during the operation

« MPI_Comm_dup (for example) is a collective

» Like MPI_Bcast, it may raise an error at some rank and not others
« When rank O sees MPI_ERR_PROC_FAILED, newcomm is not created correctly!
« At the same time, rank 2 creates newcomm correctly

« If rank 2 posts an operation with O, this operation cannot complete (O cannot post the
matching send, it doesn’t have the newcomm)

 Deadlock!

icL>or
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Safe commmunicator creation

int ft_comm_dup(MPI_Comm comm, MPI_Comm xnewcomm) <{
int rc;
int flag;

rc = MPI_Comm_dup(comm, newcomm);
flag = (MPI_SUCCESS==rc);

( 'flag ) {
( rc == MPI_SUCCESS ) {
MPI_Comm_free(newcomm);
rc = MPIX_ERR_PROC_FAILED;

See q06.err_comm_dup.c




MPI_Comm_agree

« Perform a consensus between all living processes in the
associated communicator and consistently return a value and

an error code to all living processes

« Upon completion all living processes agree to set the output
integer value to a bitwise AND operation over all the contributed
values
* Also perform a consensus on the set of known failed processes (!)

 Failures non acknowledged by all participants keep raising
MPI_ERR_PROC_FAILED




Safe commmunicator creation

int ft_comm_dup(MPI_Comm comm, MPI_Comm xnewcomm) <{
int rc;
int flag;

rc = MPI_Comm_dup(comm, newcomm);
flag = (MPI_SUCCESS==rc);

MPIX_Comm_agree(comm, &flag);
( 'flag ) {
( rc == MPI_SUCCESS ) {
MPI_Comm_free(newcomm);
rc = MPIX_ERR_PROC_FAILED;

See 06.err_comm_dup.c

« Solution: MPI_Comm_agree

« After ft_comm_dup, either all procs have created newcomm, or all procs

have returned MPI_ERR_PROC_FAILED
« Global state is consistent in all cases




Benefit of safety separation

rcl = MPI_Comm_split(comm,

rank, rowcomm);
flag = (MPI_SUCCESS==rcl);

MPIX_Comm_agree(comm, &flag);
if( !'flag ) {

if( rcl == MPI_SUCCESS ) {
MPI_Comm_free(rowcomm);

}
return MPIX_ERR_PROC_FAILED;

« PxP 2D process grid

« A process appears in two
communicators

« A row communicator
« A column communicator

See qO7.err_comm_grid2d

rc2 = MPI_Comm_split(comm,
rank, colcomm);

flag = (MPI_SUCCESS==rc2);
MPIX_Comm_agree(comm, &flag);

if( !flag ) {
if( rc2 == MPI_SUCCESS ) {

MPI_Comm_free(colcomm);

}
return MPIX_ERR_PROC_FAILED;




Benefit of safety separation

20 See O7.err_comm_grid2d
21
22

23
24 int ft_comm_grid2d(MPI_Comm comm, int p, MPI_Comm *rowcomm, MPI_Comm *xcolcomm)

30 rcl = MPI_Comm_split(comm, rank%p, rank, rowcomm);

31 rc2 MPI_Comm_split(comm, rank/p, rank, colcomm);

32 flag = (MPI_SUCCESS==rcl) && (MPI_SUCCESS==rc2);

33 MPIX_Comm_agree(comm, &flag); _
34 if( 1flag ) { « PxP 2D process grid
36 MPI_Comm_free(rowcomm); 8 A TR

37 }

38 if( rc2 == MPI_SUCCESS ) {
39 MPI_Comm_free(colcomm);
40 } o

41 return MPIX_ERR_PROC_FAILED; We Agree.orjly oGS
42 1 » Better amortization of the cost
43 return MPI_SUCCESS: over multiple operations

44 }

« A row communicator
A column communicator




Error Insulation

int main(int argc, char *xargv[]) {
MPI_Comm half_comm;

MPI_Comm_split(MPI_COMM_WORLD, (rank<(size/2))? 1: 2, rank, &half_comm);

( rank == ) raise( ) Half_comm inherits the error handler
MPI_Barrier(half_comm); from MPI_COMM_WORLD

MPI_Comm_free(&half_comm);




Interlude: MPI_ Comm_ spilit

« MPI_COMM_SPLIT( comm, color, key, newcomm )
« Color : control of subset assignment
« Key : sort key to control rank assignment

rank 0o 1 2 3 4 3) 6 14 8 9
process A B C D E F G H I J
color 0 1 3 0 3 0 0 3 1
key 3 1 2 5 1 1 1 2 1 0

3 different colors => 3 communicators
1. {A, D, F, G} with sort keys {3, 5, 1, 1} => {F, G, A, D}
2. {C, E, I} with sort keys {2, 1, 1} => {E, |, C}

B and J get MPI_COMM_NULL as they provide an undefined color (MPI_UNDEFINED)




More Insulation

21 int main(int argc, char *xargv[]) {

24

35
36
37
38
39
40
41
42
43

MPI_Comm half_comm;

MPI_Comm_split(MPI_COMM_WORLD, (rank<(size/2))?

if( rank == 0 ) raise( );
MPI_Barrier(half_comm);

MPI_Comm_free(&half_comm);

Ve

Low ranks half_comm:
What will happen?

, rank, &half_comm);

High ranks half_comm:
What will happen?




More Insulation

21 int main(int argc, char xargv[]) {
24 MPI_Comm half_comm;

35

36 MPI_Comm_split(MPI_COMM_WORLD, (riuif-{eWeYl sl il Ml &half_comm);
37 . o

28 LF( rank == 0 ) raisel f no failure, it works ©

39 MPI_Barrier(half_comm);
40 Low ranks half_comm

41 has failed process, we

42 | free it anyway
43 MPI_Comm_free(&hatf_comm);

$ $ULFM_PREFIX/bin/mpirun —-np 10 09.insulation

Rank 1 / 5: Notified of error MPI_ERR_PROC_FAILED: Process Failure. 1 found dead:
éagk}Z / 5: Notified of error MPI_ERR_PROC_FAILED: Process Failure. 1 found dead:
éagk}4 / 5: Notified of error MPI_ERR_PROC_FAILED: Process Failure. 1 found dead:
éagk}B / 5: Notified of error MPI_ERR_PROC_FAILED: Process Failure. 1 found dead:

{0}




Can we fix it? Yes we can!

FIXING THE WORLD




Full capacity recovery

 After a Revoke, our original comm is unusable
« We can Shrink: that create a new comm, but smaller

« Can be used to do collective and p2p operations, fully functional

« Some application need to restore a world the same size

« And on top of it, they want the same rank mapping




MPI_Comm_shrink

« Creates a new communicator by excluding
from the parent communicator
e It completes an agreement on the parent communicator

« Work on revoked communicators as a mean to create safe, globally
consistent sub-communicators

* Absorbs new failures, it is not allowed to return
MPI ERR _PROC_FAILED or MPI_ERR_REVOKED




P1
P2
P3
Pn

Respawning the deads

See 10.respawn

int main( int argc, charx argv[] ) {

MPI_Comm_get_parent( &world );
( MPI_COMM_NULL == world ) {

MPI_Comm_dup( MPI_COMM_WORLD, &world );
{

MPIX_Comm_replace( MPI_COMM_NULL, &world );

joinwork;

| EY RESPAMY

MPIX_Comm_replace( comm,*newcomm ). .
| Avoid the cost of
having idling spares

 We use MPI_Comm_spawn to
launch new processes

« We insert them with the right
rank in a new “world”




Respawn in action: buddy C/R

MPI_Comm_get_parent( &parent ); See 12.buddycr.c

( MPI_COMM_NULL == parent ) {

MPI_Comm_dup( MPI_COMM_WORLD, &world );

{

app_needs_repair(MPI_COMM_NULL);
¥

setjmp(jmpenv);
(iteration < max_iterations) {

(0 == iteration%2) app_buddy_ckpt(world);
iteration++;

* Do the operation until

completion, and nobody
else needs repair

New spawns (obviously)
need repair

Function
“app_needs_repair”
reloads checkpoints,
sets the restart
iteration, etc...

“app_needs_repair”
Called upon restart, in
the error handler, and
before completion

PC

longjmp

etimp




Triggering the Restart

S . . See 12.buddycr.c
121 static int app_needs_repair(void) {

ree o MPL-tomm tmp; » Upon completion of the
123 MPIX_Comm_replace(world, &tmp); spawn and recreation of
124 if( tmp == world ) return ; the new communicator
125 if( MPI_COMM_NULL != world) MPI_Comm_free(&world); if repairs have been

o wortd - tIP; done then we longjmp to
127 app_reload_ckpt(world); Skip the remaining of

1;2 return . the loop, and return to
130 the last coherent

131 version. Keep in mind
132 that longjmp does not

133 static void errhandler_respawn(MPI_Commx pcomm, intx errcode, ... restore the variables,
but leaves them as they

142 if( MPIX_ERR_PROC_FAILED !'= eclass && were at the moment of
143 MPIX_ERR_REVOKED != eclass ) { the fault.

144 MPI_Abort(MPI_COMM_WORLD, xerrcode);
145 }

146 MPIX_Comm_revoke(xpcomm);
147 if(app_needs_repair()) longjmp(jmpenv, 0);
148 }




Simple Buddy Checkpoint

49 static int app_buddy_ckpt(MPI_Comm comm) {

50 if(@ == rank || verbose) fprintf(stderr, "Rank %04d: checkpointing to %04d after iteration
%d\n", rank, rbuddy(rank), iteration);

51

52 MPI_Sendrecv(mydata_array, count, MPI_DOUBLE, rbuddy(rank), ckpt_tag,
53 buddy_ckpt, count, MPI_DOUBLE, lbuddy(rank), ckpt_tag,
54 comm, MPI_STATUS_IGNORE);

55

56 if(app_needs_repair()) {

57k) fprintf(stderr, "Rank %04d: checkpoint commit was not successful, rollback instead\n",
rank) ;

o8 longjmp(jmpenv, 0);

59 }

60 ckpt_iteration = iteration;

61

62 MPI_Sendrecv(mydata_array, count, MPI_DOUBLE, 0, ckpt_tag,
63 my_ckpt, count, MPI_DOUBLE, 0O, ckpt_tag,

64 MPI_COMM_SELF, MPI_STATUS_IGNORE);

65 return MPI_SUCCESS;

66 }

See 12.buddycr.c




—
Transaction-like approaches

. Let’s not focus on the data
save and restore

» Use the agreement to decide
when a work unit is valid

« If the agreement succeed the
work is correctly completed
and we can move forward

« If the agreement fails restore
and data and redo the
computations

« Use REVOKE to propagate
specific exception every time it
IS hecessary (even in the work
part)

« Exceptions must be bits to be
able to work with the
agreement




Transaction-like approaches

#define TRY_BLOCK(COMM, EXCEPTION) \

dO{ \ °
int __flag = Oxffffffff; \
__stack_pos++; \
EXCEPTION = setjmp(&stack_jmp_buf[__
__flag &= ~EXCEPTION; \
if( @ == EXCEPTION ) {

stack_pos]);\

#define CATCH BLOCK(COMM) \
__stack_pos—; \
__stack_in_agree = 1; /% prevent longjmp */ \
MPIX_Comm_agree(COMM, &  flag); \

__stack_in_agree = 0; /*x enable longjmp */ \ i
} \
if( oxffffffff != _ flag ) {
#define END BLOCK() \ .

} } while (0);

#define RAISE(COMM, EXCEPTION) \
MPIX_Comm_revoke(COMM) ; \
assert(@ !'= (EXCEPTION)); \
if(!__stack_in_agree ) \

longjmp( stack_jmp_buf[__stack_posl],
(EXCEPTION) ); /* escape */

TRY_BLOCK setup the
transaction, by setting a
setjmp point and the main if

CATCH_BLOCK complete the if
from the TRY_BLOCK and
Implement the agreement
about the success of the work
completion

END_BLOCK close the code
block started by the
TRY_BLOCK

RAISE revoke the
communicator and if
necessary (if not raised from
the agreement) longjmp at the
beginning of the TRY_BLOCK
catching the if




—
Transaction-like approaches

« Skeleton for a 2 level
transaction with
checkpoint approach

» Local checkpoint can be used
to handle soft errors

« Other types of checkpoint can
be used to handle hard errors

* No need for global checkpoint,
only save what will be modified
during the transaction

* Generic scheme that
can work at any
depth




—
Transaction-like approaches

* A small example doing a simple
barrier

 We manually kill a process by
brutally calling exit

« What is the correct or the
expected output?




2D Heat Propagation (Laplace eq.)

Heat Sources

* The root of many types of scientific
challenges

* The implementation used here is however trivial, and only serve
teaching purposes

* We imagine a NxM points space

v =L wur v +ur) represented as a matrix and distributed
i,] 4 i-1,j i+1 o] >J]

el on a PxQ grid of processes

« Each process has (N/P) x (M/Q) elements

i-1, i+1,]  To facilitate the update each process will surround the part of
the space she owns with a ghost region, that role is to hold the
data from the last iteration from the neighbor on the direction




2D Heat Propagation (Laplace eq.)




2D Heat Propagation (Laplace eq.)

1. We need to be able to break the
iterations and jump out of the loop




2D Heat Propagation (Laplace eq.)
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on the buddy at regular intervals




2D Heat Propagation (Laplace eq.)

1. We need to be able to break the
iterations and jump out of the loop

2. We need to be able to save data
on the buddy at regular intervals

3. We need to retrieve the data from
the neighbors, coordinate about
the iteration and restart the
computation




2D Heat Propagation (Laplace eq.)

1. We need to be able to break the
iterations and jump out of the loop

2. We need to be able to save data
on the buddy at regular intervals

3. We need to retrieve the data from
the neighbors, coordinate about
the iteration and restart the
computation




Beyond examples, what people are doing with it

USER’S RECOVERY STORIES




User Level Failure Mitigation

User Adoption

Fenix Framework/S3D
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Fig. 3. Checkpoint time for different core counts (8.6 MB/core). The numbers
above each test show the aggregated bandwidth (the total checkpoint size over
the average checkpoint time).

Fortran CoArrays “failed
images”

uses ULFM-RMA to support
Fortran TS 18508

SAP In-memory distributed
database

PHALANX
Elastic X10

Domain Decomposition PDE

mean of rho at t=0.06 mean of rho at t=0.06
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(a) failure-free (b) few failures

]

And many more...
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igure 5. Results of the FT-MLMC implementation for three different failure scenarios.
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(c) many failures

Time in seconds

MapReduce

g MapReduce Job
s ™

. N

Distributed Distributed |

Master Master

Task Task :
Runner Load ... |l Runner Load :
Balancer Balancer :

(' Failure HdIr ) (' Failure Hdlr )

L MapReduce Process L MapReduce Process

Figure 2: The architecture of FT-MRMPI.

X10 Language

16
M X10 over Sockets (IP over Infiniband)

14 M X10 over ULFM (Infiniband)
12
10

8

6

4

2

0

Non Resilient Resilient no failure  Resilient with a failure
(3 checkpoints + 1 restore)

The performance improvement due to using ULFM
v1.0 for running the LULESH proxy application [3]
(a shock hydrodynamics stencil based simulation)
running on 64 processes on 16 nodes with




Use cases: Chekpoints w/Fenix in S3D

« S3D is a production, highly
parallel method-of-lines
solver for PDEs

+ used to perform first-principles-based
direct numerical simulations of
turbulent combustion

« S3D rendered fault tolerant
using Fenix/ULFM

« 35 lines of code modified
in S3D in total!

* Order of magnitude
performance improvement
in failure scenarios

» thanks to online recovery and in-
memory checkpoint advantage over
I/0 based checkpointing

* Injection of FT layer:
addition of a couple of
Fenix calls

.. FRAMEWORKS USING ULFM

K1 I s T -
EE c 3901s 1612s «~— Recovery + rollback overhead—  4439s 1928s 6025s
30 @ S5= 8. | ;[ b
s 559 53
2 R | | |

— 25 ;'..’ < 0 10000 20000 30000 40000 50000 60000 70000 80000 86400
§ g E rrrrrerrrrrrrrrrrrrrrrrrrrrrrrrrrnd trrerrrrerrrrrrrrrrrrrrrrrr et rrrrrrrd
§ "‘-B' E187 St ’Qi/kpo'\ng FrErtHELLERErrreerrerereerrereenrn PRt et ee ettt Hienl Tt
ERP =] = S S m
= = 3 € IIIIIHH|||||| T T TR T
£ = % 2 B 94 Proc. recovery.
E 15 g § L g " _ Datarecoveryé T T T T T T T P T T T
s 3 = 5 S—— Failures —~ .
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o Execution wall time (s)

5 Image courtesy of the authors, M.Gamell, D.Katz, H.Kolla, J.Chen, S .Klasky, and M.Parashar.

Exploring automatic, online failure recovery for scientific applications at extreme scales.
0 In Proceedings of SC '14
47 96 189 9600
MTBF (s) 0.35 -

Fenix_Checkpoint_Allocate mark a memory segment
(baseptr,size) as part of the checkpoint.

Fenix_lInit Initialize Fenix, and restart point after a
recovery, status contains info about the restart mode
Fenix_Comm_Add can be used to notify Fenix about
the creation of user communicators
Fenix_Checkpoint performs a checkpoint of marked
segments

LFLR, FENIX, FTLA, Falanx
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Fig. 3. Checkpoint time for different core counts (8.6 MB/core). The numbers
above each test show the aggregated bandwidth (the total checkpoint size over
the average checkpoint time).




Use cases: Application FT
Monte-Carlo PDE solver

« ALSVID-UQ algorithm solving the 2-
dimensional stochastic Euler
equations of gas dynamics.

* Multi-level Monte-carlo expressed as a
telescopic sum

Ef\f,‘[Xh,/_Xh]}

EJII[XIJI_XIVU]

EJIO [Xho]

. | | I8

Figure 2. The idea of MLMC is illustrated on the left and compared to the MC method on the right.

lev

el =2 levels =1 &

E [XhL] — EMO [Xh()] —|— Z EME [th _ Xh£_1 ] ) (finest) level = 5 level = 4 level = 3

L
/=1
« Communication pattern:
« P2p Halo exchange between decomposed domains
« Collective allreduce inside levels (between domains)
« Collective aggregation between levels
[

FT pattern:

Fine levels domain decomposed, with halo exchange
between domains and in-memory checkpoints on
neighbors processes, work redistributed after failure

« Coarse domains replicated (failure ignored)

« Failure of all processes holding a domain looses the
results for that domain

« Massive failure will degrade the solution

Stefan Pauli, Manuel Kohler, Peter Arbenz: A fault tolerant implementation of Multi-Level Monte Carlo

domain

process @

decomposition sample count {7}

processes needed
to improve the resilience

Figure 4. Parallel distribution of work in FT-MLMC with improved failure resilience.
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Figure 5. Results of the FT-MLMC implementation for three different failure scenarios.

methods. PARCO 2013. 471-480




Use cases: Languages
Resilient X10

X10 is a PGAS programming language

» Legacy resilient X10 TCP based

try{ /*Task A*/
at (p) { /*Task B*/
finish { at (q)

Happens Before Invariance
Principle (HBI):

Failure of a place should not alter
the happens before relationship b3
between statements at the

remaining places. } catch(dpe:DeadPlaceException){

D;

async { /*Task C*/ } }

Place r ,,,F’,'?,C?,P,,, Place q

' Finish .

| {@q ,async C;}i

/*recovery steps*/}

By applying the HBI principle, Resilient X10 will ensure that statement D executes after Task C finishes, despite the loss of the

synchronization construct (finish) at place p

MPI operations in resilient X10 runtime
* Progress loop does MPI_lprobe, post heeded recv according to
probes

« Asynchronous background collective operations (on multiple
different comms to form 2d grids, etc).

Recovery

» Upon failure, all communicators recreated (from shrinking a
large communicator with spares, or using MPI_COMM_SPAWN
to get new ones)

+ Ranks reassigned identically to rebuild the same X10 “teams”

Injection of FT layer

* Unnecessary, x10 has a runtime that hides all MPI from the
application and handles failures internally

session SC’15, Austin, TX, 2015.

Source: Sara Hamouda, Benjamin Herta, Josh Milthorpe, David Grove, Olivier Tardieu. Resilient X10 over Fault Tolerant MPI. In : poster
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(3 checkpoints + 1 restore)

Non Resilient Resilient no failure

The performance improvement due to using ULFM
v1.0 for running the LULESH proxy application [3]
(a shock hydrodynamics stencil based simulation)
running on 64 processes on 16 nodes with
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Use cases: Non traditional HPC

Hadoop over MPI
* Non-HPC workflow usually do not consider
MPI because it lacks FT

Judicael A. Zounmevo, Dries Kimpe, Robert Ross, and Ahmad Afsahi. 2013. Using MPI in high-
performance computing services. In Proceedings of the 20th European MPI Users' Group Meeting
(EuroMPI '13). ACM, New York, NY, USA, 43-48.SE), 2013 IEEE 16th International Conference on.
IEEE, 2013. p. 58-65.

« ULFM permits high performance exchange in non-HPC runtimes
(like Hadoop)
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Figure 8: Normalized job comple-
tion time of failed and recovery
rumn.

: MapReduce Job
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‘1| Task Task :
'[| Runner Load .. || Runner Load ;

Balancer Balancer :

114 )( Failure Hdlr ) L ) ( Failure Hdir ) |

: = MapReduce Process 3 MapReduce Process

Figure 2: The architecture of FT-MRMPI.




SAE Data basgs

Repair Routine
called

\.

v

Acknowledgement

v

Get Group of
Failed Processes

N

Calculate new
Processes

v

Restore Data

v

Shrink
Communicator

v

Return to

Algorithm

Figure 3.2: Repair Routine

system

* Implemented over MPI for high performance

applications

Use cases: Non traditional HPC

« SAP is a production database < SAP with ULFM

« Collective operations consistency protected by
agreements

« Database Request continues in-place after an
error

» Legacy: Fault tolerance based on full-restart

Source: Fault Tolerant Collective Communication Algorithms for Distributed
Database Systems
Fehlertolerante Gruppenkommunikations Algorithmen fiir verteilte
Datenbanksysteme
Master-Thesis von Jan Stengler aus Mainz April 2017

90
80

70 -

TPC-H Q3 Restart
=®=TPC-H Q3 with Fault Tolerance
e=TPC-H Q3 Optimized

Processes

Figure 5.24: Optimization: Runtime of TPC-H Benchmark Query 3 with Failure in Phase 4 (1GB Data per

Process)
-




CONCLUSION




ULFM: support for all FT types

* You application is SPMD
« Coordinated recovery

« Checkpoint/restart based
« ABFT

« ULFM can rebuild the
same communicators
as before the failure!

icL>or

Master

Send (W1,T1) Recv (ANY) Send (W2,T1)
Submit T1 Detected W1 Resubmit

W2
Whn

» Your application is moldable
« Parameter sweep
« Master Worker
« Dynamic load balancing

« ULFM can reduce the cost
of recovery by letting you
continue to use a
communicator in limited
mode (p2p only)

83




Other mechanisms

« Supported but not covered in this tutorial: one-sided

communications and files

- Files: MPI_FILE_REVOKE
« One-sided: MPI_WIN_REVOKE, MPI_WIN_GET_FAILED

 All other communicator based mechanisms are supported via
the underlying communicator of these objects.




Why all these efforts? Prediction is

very difficult

Toward Exascale Computing (My Roadmap)

especially about the future
Based on proposed DOE roadmap with MTTI adjusted to scale linearly % Niels Bohr, Physicist - Nobel Prize Winner

Systems 2009 2011 2015 2018
System peak 2 Peta 20 Peta 100-200 Peta 1 Exa
System memory 0.3PB 1.6 PB 5PB 10 PB
Node performance 125 GF 200GF 200-400 GF 1-10TF
Node memory BW 25 GB/s 40 GB/s 100 GB/s 200-400 GB/s
Node concurrency 12 32 0(100) 0O(1000)
Interconnect BW 1.5 GB/s 22 GB/s 25 GB/s 50 GB/s
System size (nodes) 18,700 100,000 500,000 O(million)
Total concurrency 225,000 3,200,000 O(50,000,000) O(billion)
Storage 15 PB 30 PB 150 PB 300 PB

10 0.2 TB/s 2 TBI/s 10 TB/s 20 TB/s
MTTI 4 days 19h4 min 3 h52min 1 h 56 min
Power 6 MW ~10MW ~10 MW ~20 MW

* \Whatever scenario we are going ror our Exascale
platforms the MTBF will just keep shrinking




ULFM MPI: Software Infrastructure

Implementation in Open MPI, MPICH
available

Very good performance w/o failures
Open MPI ULFM 2.0 rc1 status

* In sync with Open MPI master (2 weeks ago)

New features

« SC’'16 failure detector integrated (threaded detector,
RDMA heartbeats optimization, etc.)

« PMIx notifications taken into account

» Fault tolerance with 1-copy CMA shared memory

» Fault tolerance with Non-blocking collective operations
« Fail gracefully when failure hit during

» Fail gracefully when failure hit during

« Slurm, PBS, support improved

- Tested on Cori, Edison, Titan, etc.

» Failure free performance bump!

Performance w/failures

ULFM Fault Tolerant MPI Performance with failures
IMB Ping-pong between ranks 0 and 1 (IB20G)

=y
N

Open MPI (
11 + x  FT Open MPI (w/failure at rank 3) ]
10 | 8 S R T
7.5 |
— 9 _ig’ 67 i
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The failure of rank 3 is detected and managed by rank 2 during the 512 bytes
message test. The connectivity and bandwidth between rank 0 and rank 1
are unaffected by failure handling activities at rank 2.



Scalable Failure

Detector
p. ©

f = supported number of overlapping failures
Stabilization Time T(f) = duration of the
longest sequence of non stable
configurations assuming at most f
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Scalable Revocation

Revoke Time and Perturbation in Barrier (np=6000)

140 |

Revoke Initiator Rank

» The underlying BMG topology is

symmetric and reflects in the
revoke which is independent of
the initiator

The performance of the first post-
Revoke collective operation
sustains some performance
degradation resulting from the
network jitter associated with the
circulation of revoke tokens

After the fifth Barrier
(approximately 700us), the
application is fully resynchronized,
and the Revoke reliable broadcast
has completely terminated,
therefore leaving the application
free from observable jitter.

NICS Darter (Cray XC30)
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Scalable Agreement

ERA Topologies (Cray XC30)

—e— ERA(flat binary tree)
ERA(bin/star tree)

| —~— ERA(bin/bin tree)
Open MPI Allreduce(4Bytes)

—«— Cray Allreduce(4Bytes)

I e T e Do e S

1k 2k 3k 4k 5k
#processes

6k

« Early Returning Algorithm: once

the decision reached the local
process returns, but the decided
value remains available for
providing to other processes

The underlying logical topology
hierarchically adapts to reflects to
network topology

In the failure-free case the
implementation exhibits the
theoretically proven logarithmic
behavior, similar to an optimized
version of MPI_Allreduce

NICS Darter (Cray XC30)
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Scalable Agreement

Post Failure ERA w/o Rebalancing —— -
Post Failure ERA, Rebalanced ——

2k 3k 4k 5k 6k
#processes

Early Returning Algorithm: once
the decision reached the local
process returns, but the decided
value remains available for
providing to other processes

The underlying logical topology
hierarchically adapts to reflects to
network topology

In the failure-free case the
implementation exhibits the
theoretically proven logarithmic
behavior, similar to an optimized
version of MPI_Allreduce

The optional rebalancing step is
not justified until the topology
degenerates enough to need it.

NICS Darter (Cray XC30)



So what is the right approach

» Bad news: there might not be A right approach

» An efficient, scalable and portable approach might be at the
frontier of multiple approaches

» So far the algorithm specific approaches seems the most
efficient, but they have additional requirements from the
programming paradigms

* We need fault tolerance support from the programming
paradigms

* The glue to allow composability if as important as the approaches themselves

 |Is ULFM that glue?




What about the development cost?

 ULFM has a steep learning cost compared with system level
approaches. But:
« Parallel programming was considered hard a while back. Today it is almost mainstream (!)

* Training is key for flatten the learning curve
« ULFM is a building box, most developers are not supposed to use it directly

* |nstead use domain specific approaches, proposed by the domain scientists as a
portable library implemented using the ULFM constructs

* The development cost should be put in balance with the
building and ownership cost




Can we fix C/R with hardware?

 NVRAM ? Hardware level triplication? Hardware detection (think
ECC++)

* More hardware is not only more expensive but it also increases

» The opportunity for failure (the law of big numbers)
» The cost of ownership (energy, and cooling)

* Why not using this extra hardware to improve the scalability of
the application?




You have the answer!

* You learned how to model the behavior of your application and
how to interpret the data

* You learned what you can do if you go outsize the box (compose
approaches, ULFM, ...)

* You know your algorithms and
applications

» We are looking forward to hear
about your successes !




More info, examples and
resources available

http://fault-tolerance.org

Your opinion matters!
File the SC17 tutorial evaluation form
http://bit.ly/scl7-eval

HEed0
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How to design your own replace/spare system (not presented live)

ADVANCED CONTENT




Inside MPIX_COMM_REPLACE

See 10.respawn

( comm == MPI_COMM_NULL ) {

MPI_Comm_get_parent(&icomm);
MPI_Recv(&crank, 1, MPI_INT, @, 1, icomm, MPI_STATUS_IGNORE) ;

Same as in spare: new
guys wait for their rank
from O in the old world

MPIX_Comm_shrink(comm, &scomm);
MPI_Comm_size(scomm, &ns);
MPI_Comm_size(comm, &nc);

nd = nc-ns;

(0==nd) A

MPI_SUCCESS; Spawn nd new processes

MPI_Comm_set_errhandler( scomm, MPI_ERRORS_RETURN );

rc = MPI_Comm_spawn(gargv[0], &gargv([1], nd, MPI_INFO_NULL,
, scomm, &icomm, MPI_ERRCODES_IGNORE);




Intercommunicators — P2P

On process O:
MPI1_Send( buf, MPI_INT, 1, n, tag, intercomm )

 Intracommunicator e Intercommunicator




Intercommunicators

« And what’ s a intercommunicator ?

« MP
MP

« MP
. MP

- SOMe more processes
- TWO groups
- one communicator

_COMM_REMOTE_SIZE(comm, size)
_COMM_REMOTE_GROUP( comm, group)

_COMM_TEST INTER(comm, flag)
_COMM_SIZE, MPI_COMM_RANK return

the local size respectively rank




—'
Anatomy of a Intercommunicator

- -
Group (B)

Intercommunicator




Inside MPIX_Comm_replace

rc = MPI_Comm_spawn(gargv([0], &gargv[1], nd, MPI_INFO_NULL,
, scomm, &icomm, MPI_ERRCODES_IGNORE);
flag = (MPI_SUCCESS == rc);
MPIX_Comm_agree(scomm, &flag); Check if spawn worked

( iflag ) { (using the shrink comm)
( MPI_SUCCESS == rc ) {

MPIX_Comm_revoke(icomm);

I abort with MPI_ERR_REVOKE

MPI_Comm_free(&scomm);

redo;

See 9.respawn

We need to check if spawn succeeded before proceeding further...




Intercommunicators

« MPI_INTERCOMM_MERGE( intercomm, high, intracomm)
« Create an intracomm from the union of the two groups
« The order of processes in the union respect the original one
« The high argument is used to decide which group will be first (rank 0)

high = false

high = true




Respawn 3/3

rc = MPI_Intercomm_merge(icomm, 1, &mcomm); _
rflag = flag = (MPI_SUCCESS==rc); Merge the icomm
MPIX_Comm_agree(scomm, &flag); We are back with an intra

( MPI_COMM_WORLD '= scomm ) MPI_Comm_free(&scomm);
MPIX_Comm_agree(icomm, &rflag);

MPI_Comm_free(&icomm) ; _ _
( !'(flag && rflag) ) { Verify that icomm_mege

worked takes 2
redo; agreements

See 10.respawn
« First agree on the local group (a’s know
about flag provided by a’s)

« Second agree on the remote group (a’s
know about flag provided by b’s)

« At the end, all know if both flag and rflag
(flag on the remote side) is good

<+ Group (A)

<+— Group (B)




Copy an errhandler

( MPI_COMM_NULL '= comm ) {
MPI _Errhandler errh;

MPI_Comm_get_errhandler( comm, &errh );
MPI_Comm_set_errhandler( xnewcomm, errh );

See 10.respawn

* |n the old world, newcomm should have the same error
handler as comm
- We can copy the errhandler function ©

« New spawns do have to set the error handler explicitly (no old comm to
compy it from)




Rank Reordering

MPI_Comm_rank(comm, &crank);
MPI_Comm_rank(scomm, &srank);

1f(0 == srank) {

MPI_Comm_group(comm, &cgrp);
MPI_Comm_group(scomm, &sgrp);
MPI_Group_difference(cgrp, sgrp, &dgrp);

for(i=0; i<nd; i++) {
MPI_Group_translate_ranks(dgrp, 1, &i, cgrp, &drank);

MPI_Send(&drank, 1, MPI_INT, i, 1, icomm);

See 11.respawn_reorder




Working with spares

Split the spares out of

» First use case: “world”, the work
We deploy with mpirun -np p*q+s, where s is extra processes for recovery communicator

Upon failure, spare processes join the work communicator

spare = (rank>np-SPARES-1)? MPI_UNDEFINED : 1;
MPI_Comm_split( MPI_COMM_WORLD, spare, rank, &world );

( MPI_COMM_NULL == world ) {
{
MPIX_Comm_replace( MPI_COMM_WORLD, MPI_COMM_NULL, &world );
} (MPI_COMM_NULL == world ); _ ,
MPI_Comm_size( world, &wnp ); We will define (ourselves)

MPI_Comm_rank( world, &wrank ); MPIX_Comm_replace, a
joinwork; function that fix the world

See ex3.0.shrinkspares.c




Working with spares

19 int MPIX_Comm_replace(MPI_Comm worldwspares, MPI_Comm comm, MPI_Comm
xnewcomm) |

Shrink MPI_COMM_WORLD

m25
26 MPIX_Comm_shrink(worldwspares, &shrinked);
27

28 MPI_Comm_set_errhandler( shrinked, MPI_ERRORS_RETURN );

29 MPI_Comm_size(shrinked, &ns); MPI_Comm_rank(shrinked, &srank);
30

31 if(MPI_COMM_NULL != comm) A{

32

33 MPI_Comm_size(comm, &nc);

34 if( nc > ns ) MPI_Abort(worldwspares, MPI_ERR_PROC_FAILED);
35

36

37

38 MPI_Comm_rank(comm, &crank);

40

42 } else {

44 }

45 printf(

* A look at what we need to do...

See ex3.0.shrinkspares.c




Assigning ranks to spares

See ex3.1.shrinkspares_reorder.c

if(MPI_COMM_NULL '= comm) A

MPI_Comm_rank(comm, &crank);

if(0 == srank) {

MPI_Comm_group(comm, &cgrp); MPI_Comm_group(shrinked, &sgrp);
MPI_Group_difference(cgrp, sgrp, &dgrp); MPI_Group_size(dgrp, &nd);

for(i=0; i<ns—-(nc-nd); i++) {
if( i < nd ) MPI_Group_translate_ranks(dgrp, 1, &i, cgrp, &drank);
else drank=-1;

MPI_Send(&drank, 1, MPI_INT, i+nc-nd, 1, shrinked);
}

}
} else {
MPI_Recv(&crank, 1, MPI_INT, 0, 1, shrinked, MPI_STATUS_IGNORE);

}




Inserting the spares in world

if(MPI_COMM_NULL '= comm) A

MPI_Comm_rank(comm, &crank);

MPI_Send(&drank, 1, MPI_INT, i+nc-nd, 1, shrinked);

} else {
MPI_Recv(&crank, 1, MPI_INT, 0, 1, shrinked, MPI_STATUS_IGNORE);

}

rc = MPI_Comm_split(shrinked, crank<0?MPI_UNDEFINED:1, crank, newcomm);

flag = MPIX_Comm_agree(shrinked, &flag); Sen_d’ Recv or Split CO_U|d have
MPI_Comm_free(&shrinked); failed due to new failures...
if( MPI_SUCCESS != flag ) { If any new failure, redo it all
if( MPI_SUCCESS == rc ) MPI_Comm_free( newcomm );
goto redo;

¥
return MPI_SUCCESS;

See ex3.1.shrinkspares_reorder.c




