
Resilient applications using
MPI-level constructs

2014 SC’14 Fault Tolerant MPI
Tutorial

What is the status of FT in MPI today?

• Total denial
•  “After an error is detected, the state of MPI is undefined. An MPI

implementation is free to allow MPI to continue after an error but is not
required to do so.“

• Two forms of management
•  Return codes: all MPI functions return either MPI_SUCCESS

or a specific error code related to the error class encountered
(eg MPI_ERR_ARG)

•  Error handlers: a callback automatically triggered by the MPI
implementation before
returning from an MPI
function.

2

Error Handlers

• Can be attached to all objects allowing data
transfers: communicators, windows and files

• Allow for minimalistic error recovery: the
standard suggests only non-MPI related actions

• All newly created MPI objects inherit the error
handler from their parent
•  A global error handler can be specified by associating an error handler to

MPI_COMM_WORLD right after MPI_Init

3

typedef void MPI_Comm_errhandler_function
(MPI_Comm *, int *, ...);

Summary of existing functions

• MPI_Comm_create_errhandler(errh,
errhandler_fct)
•  Declare an error handler with the MPI library

• MPI_Comm_set_errhandler(comm, errh)
•  Attach a declared error handler to a communicator
•  Newly created communicators inherits the error handler that is associated

with their parent
•  Predefined error handlers:

•  MPI_ERRORS_ARE_FATAL (default)
•  MPI_ERRORS_RETURN

4

Backward recovery: C/R

•  Coordinated checkpoint is the workhorse of FT today
•  I/O intensive, significant failure free overhead L
•  Full rollback (1 fails, all rollback) L
•  Can be deployed w/o MPI support J

•  ULFM enables deployment of in-memory, Buddy-
checkpoints, Diskless checkpoint
•  Checkpoints stored on other compute nodes
•  No I/O activity (or greatly reduced), full network bandwidth
•  Potential for a large reduction in failure free overhead, better restart speed

5

Coordinated checkpoint (possibly with incremental checkpoints)

Uncoordinated C/R

•  Checkpoints taken independently
•  Based on variants of Message Logging
•  1 fails, 1 rollback
•  Can be implemented w/o a standardized user API
•  Benefit from ULFM: implementation becomes portable

across multiple MPI libraries

6

Forward Recovery
•  Forward Recovery: Any technique that

permit the application to continue without
rollback
•  Master-Worker with simple resubmission
•  Iterative methods, Naturally fault tolerant algorithms
•  Algorithm Based Fault Tolerance
•  Replication (the only system level Forward Recovery)

•  No checkpoint I/O overhead
•  No rollback, no loss of completed work
•  May require (sometime expensive, like

replicates) protection/recovery
operations, but still generally more
scalable than checkpoint J

•  Often requires in-depths algorithm
rewrite (in contrast to automatic
system based C/R) L

7

a
b

c

d

b

e

Master

Worker0
Worker1
Worker2

epcc|cresta
Visual Identity Designs

CREST

Applications

4/11/2013 Fault Tolerance in MPI | EASC 2013 | sachs@cray.com
17

HemeLB HemeLB

Lattice Boltzmann Flow Solver
 University College London

Processor fails
¾ Re-initialize substitute processor

with average mass flow, velocity
from neighbors
passable error in domain size and
magnitude if real solution sufficiently smooth

Application specific forward recovery

• Algorithm specific FT
methods
•  Not General, but…
•  Very scalable, low overhead J
•  Can’t be deployed w/o FT-MPI

8

0:22 A. Bouteiller, T. Herault, G. Bosilca, P. Du, and J. Dongarra

 0

 2

 4

 6

 8

 10

 12

6x6; 20k 12x12; 40k 24x24; 80k 48x48; 160k
 0

 10

 20

 30

 40

 50

 60

P
e
r
fo

r
m

a
n

c
e
 (

T
F

lo
p

/s
)

R
e
la

ti
v
e
 O

v
e
r
h

e
a
d

 (
%

)

#Processors (PxQ grid); Matrix size (N)

ScaLAPACK PDGEQRF
FT-PDGEQRF (no errors)
FT-PDGEQRF (one error)

Overhead: FT-PDGEQRF (no errors)
Overhead: FT-PDGEQRF (one error)

Fig. 11. Weak scalability of FT-QR: run time overhead on Kraken when failures strike

local snapshots have to be used along with re-factorization to recover the lost data and
restore the matrix state. This is referred to as the ”failure within Q panels.”

Figure 10 shows the overhead from these two cases for the LU factorization, along
with the no-error overhead as a reference. In the “border” case, the failure is simulated
to strike when the 96th panel (which is a multiple of grid columns, 6, 12, · · · , 48) has just
finished. In the “non-border” case, failure occurs during the (Q + 2)th panel factoriza-
tion. For example, when Q = 12, the failure is injected when the trailing update for the
step with panel (1301,1301) finishes. From the result in Figure 10, the recovery pro-
cedure in both cases adds a small overhead that also decreases when scaled to large
problem size and process grid. For largest setups, only 2-3 percent of the execution
time is spent recovering from a failure.

7.4. Extension to Other factorization
The algorithm proposed in this work can be applied to a wide range of dense matrix
factorizations other than LU. As a demonstration we have extended the fault toler-
ance functions to the ScaLAPACK QR factorization in double precision. Since QR uses
a block algorithm similar to LU (and also similar to Cholesky), the integration of fault
tolerance functions is mostly straightforward. Figure 11 shows the performance of QR
with and without recovery. The overhead drops as the problem and grid size increase,
although it remains higher than that of LU for the same problem size. This is expected:
as the QR algorithm has a higher complexity than LU (43N

3 v.s. 2
3N

3), the ABFT ap-
proach incurs more extra computation when updating checksums. Similar to the LU
result, recovery adds an extra 2% overhead. At size 160,000 a failure incurs about
5.7% penalty to be recovered. This overhead becomes lower, the larger the problem or
processor grid size considered.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: January 2013.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

P
rotection blocks

Factorized in
previous iterations

trailing matrix
& protection

update by
applying the

same
operations

Factorized in
previous iterations

Factorize

ABFT

An API for diverse FT approaches

9

User Level Failure Mitigation: a set of MPI interface extensions to
enable MPI programs to restore MPI communication capabilities
disabled by failures

ULFM MPI: Software Infrastructure
•  Implementation in Open

MPI available
•  ANL working on MPICH

implementation, close to release

• Very good performance
w/o failures

• Optimization and
performance
improvements of critical
recovery routines are
close to release
•  New revoke
•  New Agreement

10

operations. Its failure free performance is unchanged whether it is deployed

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes
message test. The connectivity and bandwidth between rank 0 and rank 1
are unaffected by failure handling activities at rank 2.

B
A

N
D

W
ID

T
H

 (
G

b
it

/s
)

MESSAGE SIZE (Bytes)

ULFM Fault Tolerant MPI Performance with failures
IMB Ping-pong between ranks 0 and 1 (IB20G)

Open MPI
FT Open MPI (w/failure at rank 3)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

L
A

T
E

N
C

Y
 (

u
s
)

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

1 4 16 64 256 1K

Performance w/failures

11

epcc|cresta
Visual Identity Designs

CREST

Applications

4/11/2013 Fault Tolerance in MPI | EASC 2013 | sachs@cray.com
17

HemeLB HemeLB

Lattice Boltzmann Flow Solver
 University College London

Processor fails
¾ Re-initialize substitute processor

with average mass flow, velocity
from neighbors
passable error in domain size and
magnitude if real solution sufficiently smooth

epcc|cresta
Visual Identity Designs

CREST

Applications

4/11/2013 Fault Tolerance in MPI | EASC 2013 | sachs@cray.com
16

Long running computations
¾ Small errors can be eliminated

by numerical procedure

HemeLB HemeLB

Lattice Boltzmann Flow Solver
 University College London

SNL May 2014 Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver 12

12 Results: Scalability

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

RC: 0 RC: 1 RC: 2

AC: 0 AC: 1 AC: 2

CR: 0 CR: 1 CR: 2

number of cores

n
o
rm

a
liz

e
d
 e

f f
ic

ie
n
c
y
 (

%
)

• results on OPL cluster, max.
resolution of 213

• in terms of absolute time,
CR is always more longer
(however, uses fewer pro-
cesses)

• RC and AC also show best
scalability

• plots for 2 failures erratic
due to high overheads in �
version of ULFM MPI

JJ J • I II ⇥

RC=Replication/resampling
AC=Alternate recombination
CR=Checkpoint/Restart

OPL cluster node: 2x6
cores Xeon5670, QDR IB

(a) failure-free (b) few failures (c) many failures

Figure 5. Results of the FT-MLMC implementation for three different failure scenarios.

In Fig. 5 we show three different results, the mean of the density ⇢ at t = 0.06s,
obtained by FT-MLMC. The result in Fig. 5(a) is computed failure-free. In Fig. 5(b) a
result is shown where 3 out of 46 processes where killed. Figure 5(c) shows the result of
a FT-MLMC run where 9 out of 46 processes where killed, among them both processes
dealing with levels 2, such that all samples of this level are missing. The deterioration of
the result is obvious.

In Fig. 6 several quantities of the FT-MLMC method for different MTBFs are pre-
sented. They are discussed in the next section. Figure 6(a) presents two measurements
for the “intermediate save” strategy. (The results for the “late save” strategy are similar.)
First, we show the percentage of processes failed during the computation. Second, the “at
least a failure” probability is shown which measures the fraction of FT-MLMC runs that
experience at least one failure. (All other FT-MLMC runs are failure-free.) Remember
that standard MPI crashes if a failure occurs.

The measurement of the FT-MLMC error versus MTBF is shown in Fig. 6(b). The
error of the failure-free ALSVID-UQ is shown at MTBF = 2 ·104 s, where the fault
tolerant strategies (“intermediate save” and “late save”) are of the same quality. For
MTBF > 200 s the error remains rather constant. This can be seen for MTBF < 200 s
where the error slightly grows. It explodes at MTBF < 40 s for the “late save” strategy,
and at MTBF < 20 s for the “intermediate save” strategy.

Figure 6(c) shows the measured wall-clock run-time for the two fault tolerant strate-
gies and the failure-free run. Between the two fault tolerant versions no significant dif-
ference is measured. At MTBF = 2 ·104 s we see the small overhead (around 5%) of
both fault tolerant runs, compared to the standard failure-free ALSVID-UQ implemen-
tation. For the fault tolerant versions the run-time remains approximately constant for
MTBF > 100 s. Then the run-time decreases.

Figure 6(d) presents two measurements for the “intermediate save” strategy. (The re-
sults for the “late save” strategy are similar.) The first measurement “all samples failed”
shows how often no samples at all could be computed, since too many processes failed.
Then no FT-MLMC result is computed, such that these runs are ignored in the error com-
putation of Fig. 6(b). The same holds for runs which crashed (indicated by “program
crashed”).

Credits: ETH Zurich

Tens of papers about ULFM
last year alone.

•  ORNL: Molecular Dynamic simulation, C/R in memory
with Shrink

•  UAB: transactional FT programming model
•  Tsukuba: Phalanx Master-worker framework
•  Georgia University: Wang Landau Polymer Freezing and

Collapse, localized subdomain C/R restart
•  Sandia, INRIA, Cray: PDE sparse solver
•  Cray: CREST miniapps, PDE solver Schwartz, PPStee

(Mesh, automotive), HemeLB (Lattice Boltzmann)
•  ETH Zurich: Monte-Carlo, on failure the global

communicator (that contains spares) is shrunk, ranks
reordered to recreate the same domain decomposition

•  …

ULFM MPI API
Part rationale, part examples

12

Minimal Feature Set for FT MPI
•  Failure Notification
• Error Propagation
• Error Recovery

Not all recovery strategies
require all of these features,
that’s why the interface splits
notification, propagation and recovery.
ULFM is not a recovery strategy, but a minimalistic
set of building blocks for more complex recovery
strategies.

13

MPI

Checkpoint/
Restart

Uniform
Collectives Others

Application

FAILURE_ACK | REVOKE |
SHRINK | AGREE

Failure Notification
•  MPI stands for scalable parallel applications it would be

unreasonable to expect full connectivity between all
peers

•  The failure detection and notification
might have a neighboring scope:
only processes involved in a
communication with the failed process
 might detect the failure

•  But at least one neighbor should be informed about a
failure

•  MPI_Comm_free must free “broken” communicators
and MPI_Finalize must complete despite failures.

14

Error Propagation

• What is the scope of a failure? Who should be
notified about?

• ULFM approach: offer flexibility to allow the
library/application to design the scope of a
failure, and to limit the scope of a failure to
only the needed participants
•  eg. What is the difference between a Master/Worker and a tightly couple

application ?

15

Error Recovery

• What is the right recovery strategy?
• Keep going with the remaining processes?
• Shrink the living processes to form a new

consistent communicator?
• Spawn new processes to take the place of the

failed ones?
• Who should be in charge of defining this

survival strategy? What would be the
application feedback?

16

Integration with existing mechanisms

• New error codes to deal with failures
•  MPI_ERROR_PROC_FAILED: report that the operation discovered a newly

dead process. Returned from all blocking function, and all completion
functions.

•  MPI_ERROR_PROC_FAILED_PENDING: report that a non-blocking
MPI_ANY_SOURCE potential sender has been discovered dead.

•  MPI_ERROR_REVOKED: a communicator has been declared improper for
further communications. All future communications on this communicator
will raise the same error code, with the exception of a handful of recovery
functions

•  Is that all?
•  Matching order (MPI_ANY_SOURCE), collective communications

17

Summary of new functions

•  MPI_Comm_failure_ack(comm)
•  Resumes matching for MPI_ANY_SOURCE

•  MPI_Comm_failure_get_acked(comm, &group)
•  Returns to the user the group of processes acknowledged to have failed

•  MPI_Comm_revoke(comm)
•  Non-collective, interrupts all operations on comm (future or active, at all

ranks) by raising MPI_ERR_REVOKED

•  MPI_Comm_shrink(comm, &newcomm)
•  Collective, creates a new communicator without failed processes (identical at all ranks)

•  MPI_Comm_agree(comm, &mask)
•  Agree on the AND value on binary mask, ignoring failed processes (reliable AllReduce)

N
otification

Propagation
Recovery

MPI_Comm_failure_ack
•  Local operations that acknowledge all locally

notified failures
•  Updates the group returned by MPI_COMM_FAILURE_GET_ACKED

• Unmatched MPI_ANY_SOURCE that would have
raised MPI_ERR_PROC_FAILED_PENDING proceed
without further exceptions regarding the
acknowledged failures.

• MPI_COMM_AGREE do not raise
MPI_ERR_PROC_FAILED due to acknowledged
failures
•  No impact on other MPI calls especially not on collective communications

19

MPI_Comm_failure_get_acked

• Local operation returning the group of failed
processes in the associated communicator that
have been locally acknowledged

• Hint: All calls to MPI_Comm_failure_get_acked
between a set of MPI_Comm_failure_ack
return the same set of failed processes

20

MPI_Comm_revoke
• Communicator level failure propagation
•  The revocation of a communicator complete all

pending local operations
•  A communicator is revoked either after a local MPI_Comm_revoke or any MPI

call raise an exception of class MPI_ERR_REVOKED

• Unlike any other concept in MPI it is not a
collective call but has a collective scope

• Once a communicator has been revoked all non-
local calls are considered local and must complete
by raising MPI_ERR_REVOKED
•  Notable exceptions: the recovery functions (agreement and shrink)

21

MPI_Comm_shrink

• Creates a new communicator by excluding all
known failed processes from the parent
communicator
•  It completes an agreement on the parent communicator
•  Work on revoked communicators as a mean to create safe, globally

consistent sub-communicators

• Absorbs new failures, it is not allowed to return
MPI_ERR_PROC_FAILED or
MPI_ERR_REVOKED

22

MPI_Comm_agree

• Perform a consensus between all living
processes in the associated communicator and
consistently return a value and an error code to
all living processes

• Upon completion all living processes agree to
set the output integer value to a bitwise AND
operation over all the contributed values
•  Also perform a consensus on the set of known failed processes (!)
•  Failures non acknowledged by all participants raise

MPI_ERR_PROC_FAILED

23

Other mechanisms

• Supported but not covered in this tutorial: one-
sided communications and files
•  Files: MPI_FILE_REVOKE
•  One-sided: MPI_WIN_REVOKE, MPI_WIN_GET_FAILED

• All other communicator based mechanisms are
supported via the underlying communicator of
these objects.

24

Failure Discovery
• Discovery of failures is local (different processes

may know of different failures)
• MPI_COMM_FAILURE_ACK(comm)

•  This local operation gives the users a way to acknowledge all locally notified
failures on comm. After the call, unmatched MPI_ANY_SOURCE receive
operations proceed without further raising MPI_ERR_PROC_FAILED_PENDING
due to those acknowledged failures.

• MPI_COMM_FAILURE_GET_ACKED(comm, &grp)
•  This local operation returns the group grp of processes, from the

communicator comm, that have been locally acknowledged as failed by
preceding calls to MPI_COMM_FAILURE_ACK.

• Employing the combination ack/get_acked, a
process can obtain the list of all failed ranks (as
seen from its local perspective)

25

Continuing through errors

26

Master

W1

W2

Wn

Send (W1,T1)
Submit T1

Send (W2,T1)
Resubmit

Recv (ANY)
Detected W1

• Error notifications do not break MPI
•  App can continue to communicate on the communicator
•  More errors may be raised if the op cannot complete (typically, most collective

ops are expected to fail), but p2p between non-failed processes works

•  In this Master-Worker example, we can continue
w/o recovery!
•  Master sees a worker failed
•  Resubmit the lost work unit onto another worker
•  Quietly continue

Regaining Control
•  If a sender fails

•  The corresponding
receive cannot
complete properly
anymore

•  If we want to handle
the failure, that
particular recv must be
interrupted

•  All MPI operations must
complete (possibly in
error) when a failure
prevents their normal
completion

•  Recv from non failed
processes should
complete normally

27

legacy_code(void) {
 /* in legacy non FT code, this Recv may deadlock.
 * the runtime is expected to abort the job
 * and do resource cleanup. No opportunity for
 * recovering gracefully. */
 MPI_Recv(buff, count, datatype,
 src, tag, comm,
 MPI_STATUS_IGNORE);
}

ft_code(void) {
 /* MPI_Recv garanteed to return control to the
 * App if src is dead. */
 rc = MPI_Recv(buff, count, datatype,
 src, tag, comm,
 &status);
 /* restartless recovery becomes possible */
 if(MPI_ERR_PROC_FAILED == rc) recover();
}

Regaining Control: ANY_SOURCE
•  If the recv uses

ANY_SOURCE:
•  Any failure in the comm

is potentially a failure of
the matching sender!

•  To avoid deadlocking,
the recv must be
interrupted in any case

•  Application uses new
interfaces to inspect the
list of failed processes,
determine if the
ANY_SOURCE receive
needs to be reissued

28

ft_code_any(void) {
 int NBR, nfailed=0;
 MPI_Group_size(sendergrp, &NBR);
 for(nbrecv = 0; (nbrecv+nfailed)<NBR; nbrecv++) {
 rc = MPI_Recv(buff, count, datatype,
 MPI_ANY_SOURCE, tag, comm,
 &statusany);
 if(MPI_ERR_PROC_FAILED == rc)
 nfailed = nbsendersfailed(sendergrp);
 }
}
nbsendersfailed(MPI_Group sendergrp) {
/* Count how many of the ANY_SOURCE recv we
 * should repost */
 int nfailed;
 MPI_Group failedgrp, igrp;
 MPI_Comm_failure_ack(comm);
 MPI_Comm_failure_get_acked(comm, &failedgrp);
 MPI_Group_intersection(failedgrp, sendergrp,
 &igrp);
 MPI_Group_size(igrp, &nfailed);
 MPI_Group_free(&igrp);
 MPI_Group_free(&failedgrp);
 return nfailed;
}

ANY_SOURCE and matching
• Non-blocking

operations
•  Interrupting non-

blocking
ANY_SOURCE could
change matching
order, uh oh…

•  New error code: the
operation is
interrupted by a
process failure, but is
still pending

•  Can be completed
again, if the
application knows its
safe, matching order
respected

29

ft_code_any(void) {
 for(i=0; i<nbrecv; i++) {
 MPI_Irecv(buff, count, datatype,
 MPI_ANY_SOURCE, tag, comm, &reqs[i]);
 }
 MPI_Irecv(buff, count, datatype,
 1, tag, comm, &req);
 do {
 rc = MPI_Waitall(nbrecv, reqs, statuses);
 if(MPI_SUCCESS != rc) {
 int nfailed = nbsendersfailed(sendergrp);

 i=nbrecv;
 while(nfailed) {
 i--;
 if(statuses[i].MPI_ERROR ==
 MPI_ERR_PROC_FAILED) {
 nfailed--;
 }
 if(statuses[i].MPI_ERROR ==
 MPI_ERR_PROC_FAILED_PENDING) {
 MPI_Cancel(reqs[i]);
 MPI_Request_free(reqs[i]);
 nfailed--;
 }

 }
 } while(MPI_SUCCESS != rc)

Resolving transitive dependencies

•  P1 fails
•  P2 raises an error and

wants to change
comm pattern to do
application recovery

•  but P3..Pn are stuck in
their posted recv

•  P2 can unlock them
with Revoke J

•  P3..Pn join P2 in the
recovery

30

Recv(P1): failure
P2 calls RevokeP1

P2

P3

Pn

Recv(P1) Recv(P1): revoked

Recovery

proc_failed_err_handler(MPI_Comm comm, int err) {
 if(err == MPI_ERR_PROC_FAILED) recovery(comm);
}
deadlocking_transitive_deps(void) {
 for(i=0; i<nbrecv; i++) {
 if(myrank>0) MPI_Irecv(buff, count, datatype,
 myrank-1, tag, comm, &req);
 if(myrank<n) MPI_Send(buff2, count, datatype,
 myrank+1, tag, comm, &req);
 }
}

Resolving transitive dependencies

•  P1 fails
•  P2 raises an error and

wants to change
comm pattern to do
application recovery

•  but P3..Pn are stuck in
their posted recv

•  P2 can unlock them
with Revoke J

•  P3..Pn join P2 in the
recovery

31

Recv(P1): failure
P2 calls RevokeP1

P2

P3

Pn

Recv(P1) Recv(P1): revoked

Recovery

proc_failed_err_handler(MPI_Comm comm, int err) {
 if(err == MPI_ERR_PROC_FAILED ||
 err == MPI_ERR_REVOKED) {
 MPI_Comm_revoke(comm);
 recovery(comm);
 }
}
ft_transitive_deps(void) {
 for(i=0; i<nbrecv; i++) {
 if(myrank>0) MPI_Irecv(buff, count, datatype,
 myrank-1, tag, comm, &req);
 if(myrank<n) MPI_Send(buff2, count, datatype,
 myrank+1, tag, comm, &req);
 }
}

Errors and Collective Operations

• Exceptions are raised only at ranks where the
Bcast couldn’t succeed (lax consistency)
•  In a tree-based Bcast, only the subtree under the failed process sees the

failure
•  Other ranks succeed and proceed to the next Bcast
•  Ranks that couldn’t complete enter “recovery”, do not match the Bcast

posted at other ranks => deadlock L

32

proc_failed_err_handler(MPI_Comm comm, int err) {
 if(err == MPI_ERR_PROC_FAILED) recovery(comm);
}

deadlocking_collectives(void) {
 for(i=0; i<nbrecv; i++) {
 MPI_Bcast(buff, count, datatype, 0, comm);
 }
}

Errors and Collective Operations

• Exceptions are raised only at ranks where the
Bcast couldn’t succeed (lax consistency)
•  In a tree-based Bcast, only the subtree under the failed process sees the

failure
•  Other ranks succeed and proceed to the next Bcast
•  Ranks that couldn’t complete enter “recovery”, do not match the Bcast posted

at other ranks => MPI_Comm_revoke(comm) interrupts unmatched Bcast and
forces an exception (and triggers recovery) at all ranks

33

proc_failed_err_handler(MPI_Comm comm, int err) {
 if(err == MPI_ERR_PROC_FAILED ||
 err == MPI_ERR_REVOKED) recovery(comm);
}

deadlocking_collectives(void) {
 for(i=0; i<nbrecv; i++) {
 MPI_Bcast(buff, count, datatype, 0, comm);
 }
}

Full Recovery

• Restores full communication capability (all
collective ops, etc).

• MPI_COMM_SHRINK(comm, newcomm)
•  Creates a new communicator excluding failed processes
•  New failures are absorbed during the operation
•  The communicator can be restored to full size with MPI_COMM_SPAWN

34

P1

P2

P3

Pn
B

cast

B
cast

Shrink

B
cast

Spaw
n

HANDS ON
A cookbook of the most useful techniques

35

• mpicc x.c –o x
mpirun -np 8 -am ft-enable-mpi ./x

Your first resilient application

36

• What do we obtain
upon failure of the
single process?

• What are we missing in
order to get the
expected output?

int main(int argc, char* argv[])
{
 int rank, size;

 MPI_Init(NULL, NULL);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 if(rank == (size-1)) raise(SIGKILL);

 MPI_Barrier(MPI_COMM_WORLD);
 printf(“Rank %d / %d\n”, rank, size);

 MPI_Finalize();
}

Slightly more complex

37

•  Will this code deadlock?
•  It is guaranteed by the

standard that the fail
process error will eventually
propagate

•  Some processes will detect
the failure themselves (if the
barrier algorithm create
communications between
them and the dead process)

•  Others will be informed
either by the runtime (OOB)
or by revoking the internal
communicator used for the
collectives.

int main(int argc, char* argv[])
{
 int rank, size, rc, len;
 char errstr[MPI_MAX_ERROR_STRING];

 MPI_Init(NULL, NULL);
 MPI_Comm_set_errhandler(MPI_COMM_WORLD,
 MPI_ERRORS_RETURN);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 if(rank == (size-1)) raise(SIGKILL);

 rc = MPI_Barrier(MPI_COMM_WORLD);
 MPI_Error_string(rc, errstr, &len);
 printf(“Rank %d / %d (error %s)\n”,
 rank, size, errstr);

 MPI_Finalize();
}

Who is the dead process?

38

•  Upon failure one can use
OMPI_Comm_failure_ack to
acknowledge the known
dead processes

•  The group of dead
processes is then retrieved
using
OMPI_Comm_failure_get_a
cked

•  A lot of code is needed to
print the failed rank

•  Can the same code handle
multiple failures?

/* usual initialization */
if(rank == (size-1)) raise(SIGKILL);

rc = MPI_Barrier(MPI_COMM_WORLD);
MPI_Error_string(rc, errstr, &len);
if(MPI_ERR_PROC_FAILED == rc) {
 OMPI_Comm_failure_ack(MPI_COMM_WORLD);
 OMPI_Comm_failure_get_acked(MPI_COMM_WORLD,
 &group);
 MPI_Comm_group(MPI_COMM_WORLD, &cgroup);
 MPI_Group_size(group, &g_size);
 ranks1 = (int*)malloc(g_size * sizeof(int));
 ranks2 = (int*)malloc(g_size * sizeof(int));
 for(i = 0; i < g_size; ranks1[i] = i, i++);
 MPI_Group_translate_ranks(group, g_size, ranks1,
 cgroup, ranks2);
 printf("Rank %d / %d (error %s) [%d dead: ",
 rank, size, errstr, g_size);
 for(i = 0; i < g_size; ranks1[i] = i, i++)
 printf("%d ", ranks2[i]);
 printf("]\n");
} else
 printf("Rank %d / %d (error NONE)\n”, rank, size);

Who are the dead processes?

39

•  It is a distributed system!
•  A single dead process is

enough to force a process
out of the barrier

•  Thus it is possible that
different processes return
from the barrier for different
reasons

•  The group of failed
processes returned by
OMPI_Comm_failure_ack
is not consistent!

/* usual initialization */
if(rank > (size/2)) raise(SIGKILL);

rc = MPI_Barrier(MPI_COMM_WORLD);
MPI_Error_string(rc, errstr, &len);
if(MPI_ERR_PROC_FAILED == rc) {
 OMPI_Comm_failure_ack(MPI_COMM_WORLD);
 OMPI_Comm_failure_get_acked(MPI_COMM_WORLD,
 &group);
 MPI_Comm_group(MPI_COMM_WORLD, &cgroup);
 MPI_Group_size(group, &g_size);
 ranks1 = (int*)malloc(g_size * sizeof(int));
 ranks2 = (int*)malloc(g_size * sizeof(int));
 for(i = 0; i < g_size; ranks1[i] = i, i++);
 MPI_Group_translate_ranks(group, g_size, ranks1,
 cgroup, ranks2);
 printf("Rank %d / %d (error %s) [%d dead: ",
 rank, size, errstr, g_size);
 for(i = 0; i < g_size; ranks1[i] = i, i++)
 printf("%d ", ranks2[i]);
 printf("]\n");
} else
 printf("Rank %d / %d (error NONE)\n”, rank, size);

MORE COMPLICATED EXAMPLES

40

Transaction-like approaches
•  Let’s not focus on the data

save and restore
•  Use the agreement to decide

when a work unit is valid
•  If the agreement succeed the

work is correctly completed
and we can move forward

•  If the agreement fails restore
and data and redo the
computations

•  Use REVOKE to propagate
specific exception every time it
is necessary (even in the work
part)

•  Exceptions must be bits to be
able to work with the
agreement

41

/* save data to be used in the code below */

do {
 /* if not original instance restore the data */

 /* do some extremely useful work */

 /* validate that no errors happened */

} while (!errors)

Transaction-like approaches
•  TRY_BLOCK setup the

transaction, by setting a
setjmp point and the main if

•  CATCH_BLOCK complete the if
from the TRY_BLOCK and
implement the agreement
about the success of the work
completion

•  END_BLOCK close the code
block started by the
TRY_BLOCK

•  RAISE revoke the
communicator and if
necessary (if not raised from
the agreement) longjmp at the
beginning of the TRY_BLOCK
catching the if

42

#define TRY_BLOCK(COMM, EXCEPTION) \
do { \
 int __flag = 0xffffffff; \
 __stack_pos++; \
 EXCEPTION = setjmp(&stack_jmp_buf[__stack_pos]);\
 __flag &= ~EXCEPTION; \
 if(0 == EXCEPTION) {

#define CATCH_BLOCK(COMM) \
 __stack_pos--; \
 __stack_in_agree = 1; /* prevent longjmp */ \
 OMPI_Comm_agree(COMM, &__flag); \
 __stack_in_agree = 0; /* enable longjmp */ \
 } \
 if(0xffffffff != __flag) {

#define END_BLOCK() \
 } } while (0);

#define RAISE(COMM, EXCEPTION) \
 OMPI_Comm_revoke(COMM); \
 assert(0 != (EXCEPTION)); \
 if(!__stack_in_agree) \
 longjmp(stack_jmp_buf[__stack_pos],
 (EXCEPTION)); /* escape */

Transaction-like approaches
• Skeleton for a 2 level

transaction with
checkpoint approach
•  Local checkpoint can be used

to handle soft errors
•  Other types of checkpoint can

be used to handle hard errors
•  No need for global checkpoint,

only save what will be modified
during the transaction

• Generic scheme that
can work at any
depth

43

/* save data1 to be used in the code below */
transaction1:
TRY_BLOCK(MPI_COMM_WORLD, exception) {

 /* do some extremely useful work */

 /* save data2 to be used in the code below */
transaction2:
 TRY_BLOCK(newcomm, exception) {

 /* do more extremely useful work */

 } CATCH_BLOCK(newcomm) {
 /* restore data2 for transaction 2 */
 goto transaction2;
 } END_BLOCK()

} CATCH_BLOCK(MPI_COMM_WORLD) {
 /* restore data1 for transaction 1 */
 goto transaction1;
} END_BLOCK()

Transaction 2

Transaction 1

Transaction-like approaches
• A small example

doing a simple
barrier

• We manually kill a
process by brutally
calling exit

• What is the correct or
the expected output?

44

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

TRY_BLOCK(MPI_COMM_WORLD, exception) {

 int rank, size;

 MPI_Comm_dup(MPI_COMM_WORLD,
&newcomm);
 MPI_Comm_rank(newcomm, &rank);
 MPI_Comm_size(newcomm, &size);

 TRY_BLOCK(newcomm, exception) {

 if(rank == (size-1)) exit(0);
 rc = MPI_Barrier(newcomm);

 } CATCH_BLOCK(newcomm) {
 } END_BLOCK()

} CATCH_BLOCK(MPI_COMM_WORLD) {
} END_BLOCK()

Transaction 2

Transaction 1

CONCLUSION

45

Thank you

More info, examples and resources
available

http://fault-tolerance.org

46

