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What is the status of FT in MPI today? 

• Total denial 
•  “After an error is detected, the state of MPI is undefined. An MPI 

implementation is free to allow MPI to continue  after an error but is not 
required to do so.“ 

• Two forms of management 
•  Return codes: all MPI functions return either MPI_SUCCESS 

or a specific error code related to the error class encountered 
(eg MPI_ERR_ARG) 

•  Error handlers: a callback automatically triggered by the MPI 
implementation before  
returning from an MPI  
function. 
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Error Handlers 

• Can be attached to all objects allowing data 
transfers: communicators, windows and files 

• Allow for minimalistic error recovery: the 
standard suggests only non-MPI related actions 

• All newly created MPI objects inherit the error 
handler from their parent 
•  A global error handler can be specified by associating an error handler to 

MPI_COMM_WORLD right after MPI_Init 
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typedef void MPI_Comm_errhandler_function 
(MPI_Comm *, int *, ...);  



Summary of existing functions 

• MPI_Comm_create_errhandler(errh, 
errhandler_fct) 
•  Declare an error handler with the MPI library 

• MPI_Comm_set_errhandler(comm, errh) 
•  Attach a declared error handler to a communicator 
•  Newly created communicators inherits the error handler that is associated 

with their parent 
•  Predefined error handlers:  

•  MPI_ERRORS_ARE_FATAL (default) 
•  MPI_ERRORS_RETURN 
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Backward recovery: C/R 

•  Coordinated checkpoint is the workhorse of FT today 
•  I/O intensive, significant failure free overhead L  
•  Full rollback (1 fails, all rollback) L 
•  Can be deployed w/o MPI support J  

•  ULFM enables deployment of in-memory, Buddy-
checkpoints, Diskless checkpoint 
•  Checkpoints stored on other compute nodes 
•  No I/O activity (or greatly reduced), full network bandwidth 
•  Potential for a large reduction in failure free overhead, better restart speed 
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Coordinated checkpoint (possibly with incremental checkpoints) 



Uncoordinated C/R 

•  Checkpoints taken independently 
•  Based on variants of Message Logging 
•  1 fails, 1 rollback 
•  Can be implemented w/o a standardized user API 
•  Benefit from ULFM: implementation becomes portable 

across multiple MPI libraries 
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Forward Recovery 
•  Forward Recovery: Any technique that 

permit the application to continue without 
rollback 
•  Master-Worker with simple resubmission 
•  Iterative methods, Naturally fault  tolerant algorithms 
•  Algorithm Based Fault Tolerance 
•  Replication (the only system level Forward Recovery) 

•  No checkpoint I/O overhead 
•  No rollback, no loss of completed work 
•  May require (sometime expensive, like 

replicates) protection/recovery 
operations, but still generally more 
scalable than checkpoint J 

•  Often requires in-depths algorithm 
rewrite (in contrast to automatic 
system based C/R) L 
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HemeLB HemeLB 

Lattice Boltzmann Flow Solver 
 University College London 
 

Processor fails 
¾ Re-initialize substitute processor 

with average mass flow, velocity 
from neighbors  
passable error in domain size and 
magnitude if real solution sufficiently smooth 



Application specific forward recovery 

• Algorithm specific FT 
methods 
•  Not General, but… 
•  Very scalable, low overhead J 
•  Can’t be deployed w/o FT-MPI 
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Fig. 11. Weak scalability of FT-QR: run time overhead on Kraken when failures strike

local snapshots have to be used along with re-factorization to recover the lost data and
restore the matrix state. This is referred to as the ”failure within Q panels.”

Figure 10 shows the overhead from these two cases for the LU factorization, along
with the no-error overhead as a reference. In the “border” case, the failure is simulated
to strike when the 96th panel (which is a multiple of grid columns, 6, 12, · · · , 48) has just
finished. In the “non-border” case, failure occurs during the (Q + 2)th panel factoriza-
tion. For example, when Q = 12, the failure is injected when the trailing update for the
step with panel (1301,1301) finishes. From the result in Figure 10, the recovery pro-
cedure in both cases adds a small overhead that also decreases when scaled to large
problem size and process grid. For largest setups, only 2-3 percent of the execution
time is spent recovering from a failure.

7.4. Extension to Other factorization
The algorithm proposed in this work can be applied to a wide range of dense matrix
factorizations other than LU. As a demonstration we have extended the fault toler-
ance functions to the ScaLAPACK QR factorization in double precision. Since QR uses
a block algorithm similar to LU (and also similar to Cholesky), the integration of fault
tolerance functions is mostly straightforward. Figure 11 shows the performance of QR
with and without recovery. The overhead drops as the problem and grid size increase,
although it remains higher than that of LU for the same problem size. This is expected:
as the QR algorithm has a higher complexity than LU ( 43N

3 v.s. 2
3N

3), the ABFT ap-
proach incurs more extra computation when updating checksums. Similar to the LU
result, recovery adds an extra 2% overhead. At size 160,000 a failure incurs about
5.7% penalty to be recovered. This overhead becomes lower, the larger the problem or
processor grid size considered.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: January 2013.
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An API for diverse FT approaches  
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User Level Failure Mitigation: a set of MPI interface extensions to 
enable MPI programs to restore MPI communication capabilities 
disabled by failures 



ULFM MPI: Software Infrastructure 
•  Implementation in Open 

MPI available 
•  ANL working on MPICH 

implementation, close to release 

• Very good performance 
w/o failures 

• Optimization and 
performance 
improvements of critical 
recovery routines are 
close to release 
•  New revoke 
•  New Agreement 
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operations. Its failure free performance is unchanged whether it is deployed 

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes 
message test. The connectivity and bandwidth between rank 0 and rank 1 
are unaffected by failure handling activities at rank 2.
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Long running computations  
¾ Small errors can be eliminated 

by numerical procedure 

HemeLB HemeLB 

Lattice Boltzmann Flow Solver 
 University College London 
 

SNL May 2014 Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver 12

12 Results: Scalability
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Figure 5. Results of the FT-MLMC implementation for three different failure scenarios.

In Fig. 5 we show three different results, the mean of the density ⇢ at t = 0.06s,
obtained by FT-MLMC. The result in Fig. 5(a) is computed failure-free. In Fig. 5(b) a
result is shown where 3 out of 46 processes where killed. Figure 5(c) shows the result of
a FT-MLMC run where 9 out of 46 processes where killed, among them both processes
dealing with levels 2, such that all samples of this level are missing. The deterioration of
the result is obvious.

In Fig. 6 several quantities of the FT-MLMC method for different MTBFs are pre-
sented. They are discussed in the next section. Figure 6(a) presents two measurements
for the “intermediate save” strategy. (The results for the “late save” strategy are similar.)
First, we show the percentage of processes failed during the computation. Second, the “at
least a failure” probability is shown which measures the fraction of FT-MLMC runs that
experience at least one failure. (All other FT-MLMC runs are failure-free.) Remember
that standard MPI crashes if a failure occurs.

The measurement of the FT-MLMC error versus MTBF is shown in Fig. 6(b). The
error of the failure-free ALSVID-UQ is shown at MTBF = 2 ·104 s, where the fault
tolerant strategies (“intermediate save” and “late save”) are of the same quality. For
MTBF > 200 s the error remains rather constant. This can be seen for MTBF < 200 s
where the error slightly grows. It explodes at MTBF < 40 s for the “late save” strategy,
and at MTBF < 20 s for the “intermediate save” strategy.

Figure 6(c) shows the measured wall-clock run-time for the two fault tolerant strate-
gies and the failure-free run. Between the two fault tolerant versions no significant dif-
ference is measured. At MTBF = 2 ·104 s we see the small overhead (around 5%) of
both fault tolerant runs, compared to the standard failure-free ALSVID-UQ implemen-
tation. For the fault tolerant versions the run-time remains approximately constant for
MTBF > 100 s. Then the run-time decreases.

Figure 6(d) presents two measurements for the “intermediate save” strategy. (The re-
sults for the “late save” strategy are similar.) The first measurement “all samples failed”
shows how often no samples at all could be computed, since too many processes failed.
Then no FT-MLMC result is computed, such that these runs are ignored in the error com-
putation of Fig. 6(b). The same holds for runs which crashed (indicated by “program
crashed”).

Credits: ETH Zurich 

Tens of papers about ULFM 
last year alone. 

•  ORNL: Molecular Dynamic simulation, C/R in memory 
with Shrink 

•  UAB: transactional FT programming model 
•  Tsukuba: Phalanx Master-worker framework 
•  Georgia University: Wang Landau Polymer Freezing and 

Collapse, localized subdomain C/R restart 
•  Sandia, INRIA, Cray: PDE sparse solver 
•  Cray: CREST miniapps, PDE solver Schwartz, PPStee 

(Mesh, automotive), HemeLB (Lattice Boltzmann) 
•  ETH Zurich: Monte-Carlo, on failure the global 

communicator (that contains spares) is shrunk, ranks 
reordered to recreate the same domain decomposition 

•  … 



ULFM MPI API 
Part rationale, part examples 
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Minimal Feature Set for FT MPI 
•  Failure Notification 
• Error Propagation 
• Error Recovery 

Not all recovery strategies  
require all of these features,  
that’s why the interface splits  
notification, propagation and recovery. 
ULFM is not a recovery strategy, but a minimalistic 
set of building blocks for more complex recovery 
strategies. 
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Failure Notification 
•  MPI stands for scalable parallel applications it would be 

unreasonable to expect full connectivity between all 
peers 

•  The failure detection and notification 
might have a neighboring scope:  
only processes involved in a  
communication with the failed process 
 might detect the failure 

•  But at least one neighbor should be informed about a 
failure 

•  MPI_Comm_free must free “broken” communicators 
and MPI_Finalize must complete despite failures. 
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Error Propagation 

• What is the scope of a failure? Who should be 
notified about? 

• ULFM approach: offer flexibility to allow the 
library/application to design the scope of a 
failure, and to limit the scope of a failure to 
only the needed participants 
•  eg. What is the difference between a Master/Worker and a tightly couple 

application ? 
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Error Recovery 

• What is the right recovery strategy? 
• Keep going with the remaining processes? 
• Shrink the living processes to form a new 

consistent communicator? 
• Spawn new processes to take the place of the 

failed ones? 
• Who should be in charge of defining this 

survival strategy? What would be the 
application feedback? 
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Integration with existing mechanisms 

• New error codes to deal with failures 
•  MPI_ERROR_PROC_FAILED: report that the operation discovered a newly 

dead process. Returned from all blocking function, and all completion 
functions. 

•  MPI_ERROR_PROC_FAILED_PENDING: report that a non-blocking 
MPI_ANY_SOURCE potential sender has been discovered dead. 

•  MPI_ERROR_REVOKED: a communicator has been declared improper for 
further communications. All future communications on this communicator 
will raise the same error code, with the exception of a handful of recovery 
functions 

•  Is that all? 
•  Matching order (MPI_ANY_SOURCE), collective communications 
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Summary of new functions 

•  MPI_Comm_failure_ack(comm) 
•  Resumes matching for MPI_ANY_SOURCE 

•  MPI_Comm_failure_get_acked(comm, &group) 
•  Returns to the user the group of processes acknowledged to have failed 

•  MPI_Comm_revoke(comm) 
•  Non-collective, interrupts all operations on comm (future or active, at all 

ranks) by raising MPI_ERR_REVOKED 

•  MPI_Comm_shrink(comm, &newcomm) 
•  Collective, creates a new communicator without failed processes (identical at all ranks) 

•  MPI_Comm_agree(comm, &mask) 
•  Agree on the AND value on binary mask, ignoring failed processes (reliable AllReduce) 

N
otification 

Propagation 
Recovery 



MPI_Comm_failure_ack 
•  Local operations that acknowledge all locally 

notified failures 
•  Updates the group returned by MPI_COMM_FAILURE_GET_ACKED 

• Unmatched MPI_ANY_SOURCE that would have 
raised MPI_ERR_PROC_FAILED_PENDING proceed 
without further exceptions regarding the 
acknowledged failures. 

• MPI_COMM_AGREE do not raise 
MPI_ERR_PROC_FAILED due to acknowledged 
failures 
•  No impact on other MPI calls especially not on collective communications 
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MPI_Comm_failure_get_acked 

• Local operation returning the group of failed 
processes in the associated communicator that 
have been locally acknowledged 

• Hint: All calls to MPI_Comm_failure_get_acked 
between a set of MPI_Comm_failure_ack 
return the same set of failed processes 
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MPI_Comm_revoke 
• Communicator level failure propagation 
•  The revocation of a communicator complete all 

pending local operations 
•  A communicator is revoked either after a local MPI_Comm_revoke or any MPI 

call raise an exception of class MPI_ERR_REVOKED 

• Unlike any other concept in MPI it is not a 
collective call but has a collective scope 

• Once a communicator has been revoked all non-
local calls are considered local and must complete 
by raising MPI_ERR_REVOKED 
•  Notable exceptions: the recovery functions (agreement and shrink) 
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MPI_Comm_shrink 

• Creates a new communicator by excluding all 
known failed processes from the parent 
communicator 
•  It completes an agreement on the parent communicator 
•  Work on revoked communicators as a mean to create safe, globally 

consistent sub-communicators 

• Absorbs new failures, it is not allowed to return 
MPI_ERR_PROC_FAILED or 
MPI_ERR_REVOKED 
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MPI_Comm_agree 

• Perform a consensus between all living 
processes in the associated communicator and 
consistently return a value and an error code to 
all living processes 

• Upon completion all living processes agree to 
set the output integer value to a bitwise AND 
operation over all the contributed values 
•  Also perform a consensus on the set of known failed processes (!) 
•  Failures non acknowledged by all participants raise 

MPI_ERR_PROC_FAILED 
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Other mechanisms 

• Supported but not covered in this tutorial: one-
sided communications and files 
•  Files: MPI_FILE_REVOKE 
•  One-sided: MPI_WIN_REVOKE, MPI_WIN_GET_FAILED 

• All other communicator based mechanisms are 
supported via the underlying communicator of 
these objects. 
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Failure Discovery 
• Discovery of failures is local (different processes 

may know of different failures) 
• MPI_COMM_FAILURE_ACK(comm) 

•  This local operation gives the users a way to acknowledge all locally notified 
failures on comm. After the call, unmatched MPI_ANY_SOURCE receive 
operations proceed without further raising MPI_ERR_PROC_FAILED_PENDING 
due to those acknowledged failures.  

• MPI_COMM_FAILURE_GET_ACKED(comm, &grp) 
•  This local operation returns the group grp of processes, from the 

communicator comm, that have been locally acknowledged as failed by 
preceding calls to MPI_COMM_FAILURE_ACK.  

• Employing the combination ack/get_acked, a 
process can obtain the list of all failed ranks (as 
seen from its local perspective) 
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Continuing through errors 
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Master

W1

W2

Wn

Send (W1,T1)
Submit T1

Send (W2,T1)
Resubmit

Recv (ANY)
Detected W1

• Error notifications do not break MPI 
•  App can continue to communicate on the communicator 
•  More errors may be raised if the op cannot complete (typically, most collective 

ops are expected to fail), but p2p between non-failed processes works 

•  In this Master-Worker example, we can continue 
w/o recovery! 
•  Master sees a worker failed 
•  Resubmit the lost work unit onto another worker 
•  Quietly continue 



Regaining Control 
•  If a sender fails 

•  The corresponding 
receive cannot 
complete properly 
anymore 

•  If we want to handle 
the failure, that 
particular recv must be 
interrupted 

•  All MPI operations must 
complete (possibly in 
error) when a failure 
prevents their normal 
completion 

•  Recv from non failed 
processes should 
complete normally 
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legacy_code(void) { 
  /* in legacy non FT code, this Recv may deadlock. 
   * the runtime is expected to abort the job 
   * and do resource cleanup. No opportunity for 
   * recovering gracefully. */ 
  MPI_Recv(buff, count, datatype,  
           src, tag, comm,  
           MPI_STATUS_IGNORE); 
} 
 
ft_code(void) { 
  /* MPI_Recv garanteed to return control to the  
   * App if src is dead. */ 
  rc = MPI_Recv(buff, count, datatype, 
                src, tag, comm, 
                &status); 
  /* restartless recovery becomes possible */ 
  if( MPI_ERR_PROC_FAILED == rc ) recover(); 
} 
 



Regaining Control: ANY_SOURCE 
•  If the recv uses 

ANY_SOURCE: 
•  Any failure in the comm 

is potentially a failure of 
the matching sender! 

•  To avoid deadlocking, 
the recv must be 
interrupted in any case 

•  Application uses new 
interfaces to inspect the 
list of failed processes, 
determine if the 
ANY_SOURCE receive 
needs to be reissued 
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ft_code_any(void) { 
  int NBR, nfailed=0; 
  MPI_Group_size( sendergrp, &NBR ); 
  for(nbrecv = 0; (nbrecv+nfailed)<NBR; nbrecv++) { 
    rc = MPI_Recv(buff, count, datatype, 
                  MPI_ANY_SOURCE, tag, comm, 
                  &statusany); 
    if( MPI_ERR_PROC_FAILED == rc ) 
      nfailed = nbsendersfailed( sendergrp ); 
  } 
} 
nbsendersfailed(MPI_Group sendergrp) { 
/* Count how many of the ANY_SOURCE recv we    
 * should repost */ 
  int nfailed; 
  MPI_Group failedgrp, igrp; 
  MPI_Comm_failure_ack(comm); 
  MPI_Comm_failure_get_acked(comm, &failedgrp); 
  MPI_Group_intersection( failedgrp, sendergrp,  
                          &igrp ); 
  MPI_Group_size( igrp, &nfailed ); 
  MPI_Group_free( &igrp ); 
  MPI_Group_free( &failedgrp ); 
  return nfailed; 
} 



ANY_SOURCE and matching 
• Non-blocking 

operations 
•  Interrupting non-

blocking 
ANY_SOURCE could 
change matching 
order, uh oh… 

•  New error code: the 
operation is 
interrupted by a 
process failure, but is 
still pending 

•  Can be completed 
again, if the 
application knows its 
safe, matching order 
respected 
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ft_code_any(void) { 
  for(i=0; i<nbrecv; i++) { 
    MPI_Irecv(buff, count, datatype, 
              MPI_ANY_SOURCE, tag, comm, &reqs[i]); 
  } 
  MPI_Irecv(buff, count, datatype, 
            1, tag, comm, &req); 
  do { 
    rc = MPI_Waitall(nbrecv, reqs, statuses); 
    if( MPI_SUCCESS != rc ) { 
       int nfailed = nbsendersfailed(sendergrp); 

    i=nbrecv; 
       while(nfailed) { 
         i--; 
         if( statuses[i].MPI_ERROR ==  
               MPI_ERR_PROC_FAILED ) { 
           nfailed--; 
         } 
         if( statuses[i].MPI_ERROR ==   
               MPI_ERR_PROC_FAILED_PENDING ) { 
           MPI_Cancel(reqs[i]);  
           MPI_Request_free(reqs[i]); 
           nfailed--; 
         } 

  } 
  } while( MPI_SUCCESS != rc ) 
 



Resolving transitive dependencies 

•  P1 fails 
•  P2 raises an error and 

wants to change 
comm pattern  to do 
application recovery 

•  but P3..Pn are stuck in 
their posted recv 

•  P2 can unlock them 
with Revoke J 

•  P3..Pn join P2 in the 
recovery 
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Recv(P1): failure
P2 calls RevokeP1

P2

P3

Pn

Recv(P1) Recv(P1): revoked

Recovery

proc_failed_err_handler(MPI_Comm comm, int err) { 
  if(err == MPI_ERR_PROC_FAILED) recovery(comm); 
} 
deadlocking_transitive_deps(void) { 
  for(i=0; i<nbrecv; i++) { 
    if(myrank>0) MPI_Irecv(buff, count, datatype, 
                           myrank-1, tag, comm, &req); 
    if(myrank<n) MPI_Send(buff2, count, datatype, 
                           myrank+1, tag, comm, &req); 
  } 
} 



Resolving transitive dependencies 

•  P1 fails 
•  P2 raises an error and 

wants to change 
comm pattern  to do 
application recovery 

•  but P3..Pn are stuck in 
their posted recv 

•  P2 can unlock them 
with Revoke J 

•  P3..Pn join P2 in the 
recovery 
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Recv(P1): failure
P2 calls RevokeP1

P2

P3

Pn

Recv(P1) Recv(P1): revoked

Recovery

proc_failed_err_handler(MPI_Comm comm, int err) { 
  if(err == MPI_ERR_PROC_FAILED || 
     err == MPI_ERR_REVOKED ) { 
    MPI_Comm_revoke(comm); 
    recovery(comm); 
  } 
} 
ft_transitive_deps(void) { 
  for(i=0; i<nbrecv; i++) { 
    if(myrank>0) MPI_Irecv(buff, count, datatype, 
                           myrank-1, tag, comm, &req); 
    if(myrank<n) MPI_Send(buff2, count, datatype, 
                           myrank+1, tag, comm, &req); 
  } 
} 



Errors and Collective Operations 

• Exceptions are raised only at ranks where the 
Bcast couldn’t succeed (lax consistency) 
•  In a tree-based Bcast, only the subtree under the failed process sees the 

failure 
•  Other ranks succeed and proceed to the next Bcast 
•  Ranks that couldn’t complete enter “recovery”, do not match the Bcast 

posted at other ranks => deadlock L 
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proc_failed_err_handler(MPI_Comm comm, int err) { 
  if(err == MPI_ERR_PROC_FAILED) recovery(comm); 
} 
 
deadlocking_collectives(void) { 
  for(i=0; i<nbrecv; i++) { 
     MPI_Bcast(buff, count, datatype, 0, comm); 
  } 
} 



Errors and Collective Operations 

• Exceptions are raised only at ranks where the 
Bcast couldn’t succeed (lax consistency) 
•  In a tree-based Bcast, only the subtree under the failed process sees the 

failure 
•  Other ranks succeed and proceed to the next Bcast 
•  Ranks that couldn’t complete enter “recovery”, do not match the Bcast posted 

at other ranks => MPI_Comm_revoke(comm) interrupts unmatched Bcast and 
forces an exception (and triggers recovery) at all ranks 
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proc_failed_err_handler(MPI_Comm comm, int err) { 
  if(err == MPI_ERR_PROC_FAILED ||  
     err == MPI_ERR_REVOKED ) recovery(comm); 
} 
 
deadlocking_collectives(void) { 
  for(i=0; i<nbrecv; i++) { 
     MPI_Bcast(buff, count, datatype, 0, comm); 
  } 
} 



Full Recovery 

• Restores full communication capability (all 
collective ops, etc). 

• MPI_COMM_SHRINK(comm, newcomm) 
•  Creates a new communicator excluding failed processes 
•  New failures are absorbed during the operation 
•  The communicator can be restored to full size with MPI_COMM_SPAWN 
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HANDS ON 
A cookbook of the most useful techniques 
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• mpicc x.c –o x 
mpirun -np 8 -am ft-enable-mpi ./x 



Your first resilient application 
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• What do we obtain 
upon failure of the 
single process? 

• What are we missing in 
order to get the 
expected output? 

int main( int argc, char* argv[] ) 
{ 
    int rank, size; 
 
    MPI_Init(NULL, NULL); 
 
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
    MPI_Comm_size(MPI_COMM_WORLD, &size); 
    if( rank == (size-1) ) raise(SIGKILL); 
 
    MPI_Barrier(MPI_COMM_WORLD); 
    printf(“Rank %d / %d\n”, rank, size); 
 
    MPI_Finalize(); 
} 



Slightly more complex 
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•  Will this code deadlock? 
•  It is guaranteed by the 

standard that the fail 
process error will eventually 
propagate 

•  Some processes will detect 
the failure themselves (if the 
barrier algorithm create 
communications between 
them and the dead process) 

•  Others will be informed 
either by the runtime (OOB) 
or by revoking the internal 
communicator used for the 
collectives. 

int main( int argc, char* argv[] ) 
{ 
    int rank, size, rc, len; 
    char errstr[MPI_MAX_ERROR_STRING]; 
 
    MPI_Init(NULL, NULL); 
    MPI_Comm_set_errhandler(MPI_COMM_WORLD, 
                   MPI_ERRORS_RETURN); 
 
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
    MPI_Comm_size(MPI_COMM_WORLD, &size); 
    if( rank == (size-1) ) raise(SIGKILL); 
 
    rc = MPI_Barrier(MPI_COMM_WORLD); 
    MPI_Error_string( rc, errstr, &len ); 
    printf(“Rank %d / %d (error %s)\n”, 
             rank, size, errstr); 
 
    MPI_Finalize(); 
} 



Who is the dead process? 
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•  Upon failure one can use 
OMPI_Comm_failure_ack to 
acknowledge the known 
dead processes 

•  The group of dead 
processes is then retrieved 
using 
OMPI_Comm_failure_get_a
cked 

•  A lot of code is needed to 
print the failed rank 

•  Can the same code handle 
multiple failures? 

/* usual initialization */  
if( rank == (size-1) ) raise(SIGKILL); 
 
rc = MPI_Barrier(MPI_COMM_WORLD); 
MPI_Error_string( rc, errstr, &len ); 
if( MPI_ERR_PROC_FAILED == rc ) { 
   OMPI_Comm_failure_ack(MPI_COMM_WORLD); 
   OMPI_Comm_failure_get_acked(MPI_COMM_WORLD, 
                                &group); 
   MPI_Comm_group(MPI_COMM_WORLD, &cgroup); 
   MPI_Group_size(group, &g_size); 
   ranks1 = (int*)malloc(g_size * sizeof(int)); 
   ranks2 = (int*)malloc(g_size * sizeof(int)); 
   for(i = 0; i < g_size; ranks1[i] = i, i++ ); 
   MPI_Group_translate_ranks(group, g_size, ranks1, 
                                  cgroup, ranks2); 
   printf("Rank %d / %d (error %s) [%d dead: ", 
             rank, size, errstr, g_size); 
   for(i = 0; i < g_size; ranks1[i] = i, i++ ) 
        printf("%d ", ranks2[i]); 
   printf("]\n"); 
} else 
    printf("Rank %d / %d (error NONE)\n”, rank, size); 



Who are the dead processes? 
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•  It is a distributed system! 
•  A single dead process is 

enough to force a process 
out of the barrier 

•  Thus it is possible that 
different processes return 
from the barrier for different 
reasons 

•  The group of failed 
processes returned by 
OMPI_Comm_failure_ack 
is not consistent! 

/* usual initialization */  
if( rank > (size/2) ) raise(SIGKILL); 
 
rc = MPI_Barrier(MPI_COMM_WORLD); 
MPI_Error_string( rc, errstr, &len ); 
if( MPI_ERR_PROC_FAILED == rc ) { 
   OMPI_Comm_failure_ack(MPI_COMM_WORLD); 
   OMPI_Comm_failure_get_acked(MPI_COMM_WORLD, 
                                &group); 
   MPI_Comm_group(MPI_COMM_WORLD, &cgroup); 
   MPI_Group_size(group, &g_size); 
   ranks1 = (int*)malloc(g_size * sizeof(int)); 
   ranks2 = (int*)malloc(g_size * sizeof(int)); 
   for(i = 0; i < g_size; ranks1[i] = i, i++ ); 
   MPI_Group_translate_ranks(group, g_size, ranks1, 
                                  cgroup, ranks2); 
   printf("Rank %d / %d (error %s) [%d dead: ", 
             rank, size, errstr, g_size); 
   for(i = 0; i < g_size; ranks1[i] = i, i++ ) 
        printf("%d ", ranks2[i]); 
   printf("]\n"); 
} else 
    printf("Rank %d / %d (error NONE)\n”, rank, size); 



MORE COMPLICATED EXAMPLES 
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Transaction-like approaches 
•  Let’s not focus on the data 

save and restore 
•  Use the agreement to decide 

when a work unit is valid 
•  If the agreement succeed the 

work is correctly completed 
and we can move forward 

•  If the agreement fails restore 
and data and redo the 
computations 

•  Use REVOKE to propagate 
specific exception every time it 
is necessary (even in the work 
part) 

•  Exceptions must be bits to be 
able to work with the 
agreement 
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/* save data to be used in the code below */ 
 
do { 
  /* if not original instance restore the data */ 
 
  /* do some extremely useful work */ 
 
  /* validate that no errors happened */ 
 
} while  (!errors) 



Transaction-like approaches 
•  TRY_BLOCK setup the 

transaction, by setting a 
setjmp point and the main if 

•  CATCH_BLOCK complete the if 
from the TRY_BLOCK and 
implement the agreement 
about the success of the work 
completion 

•  END_BLOCK close the code 
block started by the 
TRY_BLOCK 

•  RAISE revoke the 
communicator and if 
necessary (if not raised from 
the agreement) longjmp at the 
beginning of the TRY_BLOCK 
catching the if 
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#define TRY_BLOCK(COMM, EXCEPTION) \ 
do { \ 
  int __flag = 0xffffffff; \ 
  __stack_pos++; \ 
  EXCEPTION = setjmp(&stack_jmp_buf[__stack_pos]);\ 
  __flag &= ~EXCEPTION; \ 
  if( 0 == EXCEPTION ) { 
 
#define CATCH_BLOCK(COMM)  \ 
    __stack_pos--; \ 
    __stack_in_agree = 1;  /* prevent longjmp */ \ 
    OMPI_Comm_agree(COMM, &__flag); \ 
    __stack_in_agree = 0; /* enable longjmp */ \ 
  } \ 
  if( 0xffffffff != __flag ) { 
 
#define END_BLOCK() \ 
  } } while (0); 
 
#define RAISE(COMM, EXCEPTION) \ 
  OMPI_Comm_revoke(COMM); \ 
  assert(0 != (EXCEPTION)); \ 
  if(!__stack_in_agree ) \ 
    longjmp( stack_jmp_buf[__stack_pos], 
                  (EXCEPTION) ); /* escape */ 



Transaction-like approaches 
• Skeleton for a 2 level 

transaction with 
checkpoint approach 
•  Local checkpoint can be used 

to handle soft errors 
•  Other types of checkpoint can 

be used to handle hard errors 
•  No need for global checkpoint, 

only save what will be modified 
during the transaction 

• Generic scheme that 
can work at any 
depth 
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/* save data1 to be used in the code below */ 
transaction1: 
TRY_BLOCK(MPI_COMM_WORLD, exception) { 
 
     /* do some extremely useful work */ 
 
    /* save data2 to be used in the code below */ 
transaction2: 
    TRY_BLOCK(newcomm, exception) { 
 
        /* do more extremely useful work */ 
 
    } CATCH_BLOCK(newcomm) { 
        /* restore data2 for transaction 2 */ 
        goto transaction2; 
    } END_BLOCK() 
 
} CATCH_BLOCK(MPI_COMM_WORLD) { 
    /* restore data1 for transaction 1 */ 
    goto transaction1; 
} END_BLOCK() 

Transaction 2 

Transaction 1 



Transaction-like approaches 
• A small example 

doing a simple 
barrier 

• We manually kill a 
process by brutally 
calling exit 

• What is the correct or 
the expected output? 
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MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
MPI_Comm_size(MPI_COMM_WORLD, &size); 
 
TRY_BLOCK(MPI_COMM_WORLD, exception) { 
 
    int rank, size; 
 
    MPI_Comm_dup(MPI_COMM_WORLD, 
&newcomm); 
    MPI_Comm_rank(newcomm, &rank); 
    MPI_Comm_size(newcomm, &size); 
 
    TRY_BLOCK(newcomm, exception) { 
 
        if( rank == (size-1) ) exit(0); 
        rc = MPI_Barrier(newcomm); 
 
    } CATCH_BLOCK(newcomm) { 
    } END_BLOCK() 
 
} CATCH_BLOCK(MPI_COMM_WORLD) { 
} END_BLOCK() 

Transaction 2 

Transaction 1 



CONCLUSION 
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Thank you 

More info, examples and resources 
available 

http://fault-tolerance.org 
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