
Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Fault-tolerant Techniques for HPC:
Theory and Practice

George Bosilca1, Aurélien Bouteiller1,
Thomas Hérault1 & Yves Robert1,2

1 – University of Tennessee Knoxville
2 – ENS Lyon, INRIA & Institut Universitaire de France

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr

http://graal.ens-lyon.fr/~yrobert/sc15tutorial.pdf

SC’2015 Tutorial

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 1/ 235

{bosilca,bouteiller,herault}@icl.utk.edu
yves.robert@inria.fr
http://graal.ens-lyon.fr/~yrobert/sc15tutorial.pdf

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 2/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)
Large-scale computing platforms
Faults and failures

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 3/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)
Large-scale computing platforms
Faults and failures

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 4/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Exascale platforms (courtesy Jack Dongarra)

Potential System Architecture
with a cap of $200M and 20MW
 Systems 2011

K computer
2019 Difference

Today & 2019

System peak 10.5 Pflop/s 1 Eflop/s O(100)

Power 12.7 MW ~20 MW

System memory 1.6 PB 32 - 64 PB O(10)

Node performance 128 GF 1,2 or 15TF O(10) – O(100)

Node memory BW 64 GB/s 2 - 4TB/s O(100)

Node concurrency 8 O(1k) or 10k O(100) – O(1000)

Total Node Interconnect BW 20 GB/s 200-400GB/s O(10)

System size (nodes) 88,124 O(100,000) or O(1M) O(10) – O(100)

Total concurrency 705,024 O(billion) O(1,000)

MTTI days O(1 day) - O(10)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 5/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Exascale platforms (courtesy C. Engelmann & S. Scott)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 6/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Exascale platforms

Hierarchical
• 105 or 106 nodes
• Each node equipped with 104 or 103 cores

Failure-prone

MTBF – one node 1 year 10 years 120 years
MTBF – platform 30sec 5mn 1h

of 106 nodes

More nodes ⇒ Shorter MTBF (Mean Time Between Failures)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 7/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Exascale platforms

Hierarchical
• 105 or 106 nodes
• Each node equipped with 104 or 103 cores

Failure-prone

MTBF – one node 1 year 10 years 120 years
MTBF – platform 30sec 5mn 1h

of 106 nodes

More nodes ⇒ Shorter MTBF (Mean Time Between Failures)

Exascale

6= Petascale ×1000

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 7/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Even for today’s platforms (courtesy F. Cappello)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 8/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Even for today’s platforms (courtesy F. Cappello)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 9/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)
Large-scale computing platforms
Faults and failures

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 10/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Error sources (courtesy Franck Cappello)

•  Analysis of error and failure logs

•  In 2005 (Ph. D. of CHARNG-DA LU) : “Software halts account for the most number of
outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware
problems, albeit rarer, need 6.3-100.7 hours to solve.”

•  In 2007 (Garth Gibson, ICPP Keynote):

•  In 2008 (Oliner and J. Stearley, DSN Conf.):
50%

Hardware

Conclusion: Both Hardware and Software failures have to be considered

Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other.

Hardware errors, Disks, processors, memory, network

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 11/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

A few definitions

Many types of faults: software error, hardware malfunction,
memory corruption

Many possible behaviors: silent, transient, unrecoverable

Restrict to faults that lead to application failures

This includes all hardware faults, and some software ones

Will use terms fault and failure interchangeably

Silent errors (SDC) addressed later in the tutorial

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 12/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Failure distributions: (1) Exponential

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)

Exp(λ): Exponential distribution law of parameter λ:

Pdf: f (t) = λe−λtdt for t ≥ 0

Cdf: F (t) = 1− e−λt

Mean = 1
λ

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 13/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Failure distributions: (1) Exponential

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)

X random variable for Exp(λ) failure inter-arrival times:

P (X ≤ t) = 1− e−λtdt (by definition)

Memoryless property: P (X ≥ t + s |X ≥ s) = P (X ≥ t)
at any instant, time to next failure does not depend upon
time elapsed since last failure

Mean Time Between Failures (MTBF) µ = E (X) = 1
λ

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 13/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Failure distributions: (2) Weibull

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100)

Weibull(k, λ): Weibull distribution law of shape parameter k and
scale parameter λ:

Pdf: f (t) = kλ(tλ)k−1e−(λt)k dt for t ≥ 0

Cdf: F (t) = 1− e−(λt)k

Mean = 1
λΓ(1 + 1

k)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 14/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Failure distributions: (2) Weibull

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100)

X random variable for Weibull(k , λ) failure inter-arrival times:

If k < 1: failure rate decreases with time
”infant mortality”: defective items fail early

If k = 1: Weibull(1, λ) = Exp(λ) constant failure time

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 14/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Failure distributions: with several processors

Processor (or node): any entity subject to failures
⇒ approach agnostic to granularity

If the MTBF is µ with one processor,
what is its value with p processors?

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 15/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Intuition

Time

p1

p2

p3

t

If three processors have around 20 faults during a time t (µ = t
20)...

Time

p

t

...during the same time, the platform has around 60 faults (µp = t
60)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 16/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Platform MTBF

Rebooting only faulty processor

Platform failure distribution
⇒ superposition of p IID processor distributions
⇒ IID only for Exponential

Define µp by

lim
F→+∞

n(F)

F
=

1

µp

n(F) = number of platform failures until time F is exceeded

Theorem: µp =
µ

p
for arbitrary distributions

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 17/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Values from the literature

MTBF of one processor: between 1 and 125 years

Shape parameters for Weibull: k = 0.5 or k = 0.7

Failure trace archive from INRIA
(http://fta.inria.fr)

Computer Failure Data Repository from LANL
(http://institutes.lanl.gov/data/fdata)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 18/ 235

http://fta.inria.fr
http://institutes.lanl.gov/data/fdata

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Does it matter?

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0h 3h 6h 9h 12h 15h 18h 21h 24h

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (hours)

Parallel machine (10
6
 nodes)

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100)

After infant mortality and before aging,
instantaneous failure rate of computer platforms is almost constant

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 19/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Summary for the road

MTBF key parameter and µp = µ
p ,

Exponential distribution OK for most purposes ,
Assume failure independence while not (completely) true /

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 20/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)
Process Checkpointing
Coordinated Checkpointing
Application-Level Checkpointing
Hierarchical checkpointing

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 21/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Maintaining Redundant Information

Goal

General Purpose Fault Tolerance Techniques: work despite the
application behavior

Two adversaries: Failures & Application

Use automatically computed redundant information

At given instants: checkpoints
At any instant: replication
Or anything in between: checkpoint + message logging

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 22/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)
Process Checkpointing
Coordinated Checkpointing
Application-Level Checkpointing
Hierarchical checkpointing

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 23/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Process Checkpointing

Goal

Save the current state of the process

FT Protocols save a possible state of the parallel application

Techniques

User-level checkpointing

System-level checkpointing

Blocking call

Asynchronous call

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 24/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

User-level checkpointing

User code serializes the state of the process in a file, or creates a
copy in memory.

Usually small(er than system-level checkpointing)

Portability

Diversity of use

Hard to implement if preemptive checkpointing is needed

Loss of the functions call stack

code full of jumps
loss of internal library state

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 25/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

System-level checkpointing

Different possible implementations: OS syscall; dynamic
library; compiler assisted

Create a serial file that can be loaded in a process image.
Usually on the same architecture, same OS, same software
environment.

Entirely transparent

Preemptive (often needed for library-level checkpointing)

Lack of portability

Large size of checkpoint (≈ memory footprint)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 26/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Blocking / Asynchronous call

Blocking Checkpointing

Relatively intuitive: checkpoint(filename)

Cost: no process activity during the whole checkpoint operation.
Can be linear in the size of memory and in the size of modified files

Asynchronous Checkpointing

System-level approach: make use of copy on write of fork syscall
User-level approach: critical sections, when needed

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 27/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Storage

Remote Reliable Storage

Intuitive. I/O intensive. Disk usage.

Memory Hierarchy

local memory

local disk (SSD, HDD)

remote disk

Scalable Checkpoint Restart Library
http://scalablecr.sourceforge.net

Checkpoint is valid when finished on reliable storage

Distributed Memory Storage

In-memory checkpointing

Disk-less checkpointing

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 28/ 235

http://scalablecr.sourceforge.net

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)
Process Checkpointing
Coordinated Checkpointing
Application-Level Checkpointing
Hierarchical checkpointing

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 29/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Coordinated checkpointing

orphan

orphan

missing

Definition (Missing Message)

A message is missing if in the current configuration, the sender
sent it, while the receiver did not receive it

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 30/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Coordinated checkpointing

orphan

orphan

missing

Definition (Orphan Message)

A message is orphan if in the current configuration, the receiver
received it, while the sender did not send it

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 31/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Coordinated Checkpointing Idea

Create a consistent view of the application

Every message belongs to a single checkpoint wave

All communication channels must be flushed (all2all)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 32/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Blocking Coordinated Checkpointing

App. Message Marker Message

Silences the network during the checkpoint

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 33/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Non-Blocking Coordinated Checkpointing

App. Message Marker Message

Communications received after the beginning of the
checkpoint and before its end are added to the receiver’s
checkpoint

Communications inside a checkpoint are pushed back at the
beginning of the queues

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 34/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Implementation

Communication Library

Flush of communication channels

conservative approach. One Message per open channel / One
message per channel

Preemptive checkpointing usually required

Can have a user-level checkpointing, but requires one that be
called any time

Application Level

Flush of communication channels

Can be as simple as Barrier(); Checkpoint();

Or as complex as having a quiesce(); function in all libraries

User-level checkpointing

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 35/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Coordinated Protocol Performance

0
2
4
6
8

10
12
14

N
um

be
r o

f c
he

ck
po

in
t w

av
es

VCL number of waves
PCL number of waves

0 20 40 60 80 100
Time between checkpoints (s)

0
20
40
60
80

100
120
140
160

Ex
ec

ut
io

n
tim

e
(s

)
VCL execution time
PCL execution time

BT.B.64

0 1 2 3 4 5 6 7
Number of checkpoint waves

0
20
40
60
80

100
120
140
160

Ex
ec

ut
io

n
tim

e
(s

)

BT.B.64

0
2
4
6
8

10
12
14

N
um

be
r o

f c
he

ck
po

in
t w

av
es

CG.C.64

0 50 100
Time between checkpoints (s)

0
10
20
30
40
50
60
70
80
90

100

Ex
ec

ut
io

n
tim

e
(s

)

0 2 4 6 8
Number of checkpoint waves

0
10
20
30
40
50
60
70
80
90

100

Ex
ec

ut
io

n
tim

e
(s

)

CG.C.64

Fig. 7. Impact of checkpoint frequency on BT.B.64 and CG.C.64 for myricom network

number of checkpoint waves for each run, while the
right figures present the completion time of the same
experiments as function of the number of checkpoint
waves.
The PCL execution time follows the number of check-

point waves, and the right figures demonstrate that the
completion time is a linear function of the number of
checkpoints. This is easily explained by the synchroniza-
tions introduced by the blocking protocol. As explained
in the cluster experiments, the number of checkpoint
waves does not directly influence the performance of the
VCL implementation.
CG is a benchmark with a lot of small communica-

tions, so a latency-bound benchmark. VCL is imple-
mented with a communication daemon, and message
has to pass through two UNIX sockets and the ethernet
emulation of the myri2000 card, implying unnecessary
copies and a high latency overhead. This is why PCL
performs much better than VCL for this benchmark.
BT is a benchmark computation-bound, with a rel-

atively small number of long communications. So the
VCL implementation does not suffer from the overhead

of its messages copies, and the overhead of the synchro-
nizations of PCL induces better performances for VCL
with high checkpoint wave frequency.

D. Large scale experiments
The large-scale experiments are conducted on

Grid5000. Its clusters are interconnected with internet
links. In order to evaluate the results of the benchmarks,
we first measure the raw performance of this platform
using the NetPIPE [20] utility. This is a ping pong test
for several message size and small perturbations around
these sizes.
Figure 8 presents the bandwidth and latency measure-

ments between each pair of clusters. The network is up
to 20 times faster between two nodes of the same cluster
than between two nodes of two clusters. Moreover, the
latency is up to two orders of magnitude greater between
clusters than between nodes.
We present here results only for the PCL implemen-

tation. The VCL implementation was not designed for
this scale, it uses select system call to multiplex its
communication channels, and this tool is not scalable
after a thousand sockets (in Linux, a file descriptor set

Coordinated Protocol Performance

VCL = nonblocking coordinated protocol

PCL = blocking coordinated protocol

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 36/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)
Process Checkpointing
Coordinated Checkpointing
Application-Level Checkpointing
Hierarchical checkpointing

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 37/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Application-Level Checkpointing

Application-Level Checkpointing

Flush All Communication Channels

’Natural Synchronization Point of the Application’
May need quiesce() interface for asynchronous libraries
(unusual)

Take User-Level Process Checkpoint

Serialize the state
Some frameworks can help – FTI

Store the Checkpoint

In files (Some frameworks can help – SCR, FTI)
In memory (Some frameworks can help – FTI)

Remove unused checkpoints

Atomic Commit

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 38/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Application-Level Checkpointing

Application-Level Restart

Synchronize processes

Load the checkpoints

Decide which checkpoints to load

Jump to the end of the corresponding checkpoint
synchronization

Don’t forget to save the progress information in the checkpoint

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 39/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Example: MPI-1D Stencil

MPI 1D Stencil
1 int main (int argc , char *argv [])

2 {

3 double locals[NBLOCALS], /* The local values */

4 *globals , /* all values , defined only for 0 */

5 local_error , global_error; /* Estimates of the error */

6 int taskid , numtasks; /* rank and world size */

7 MPI_Init (&argc ,&argv);

8 MPI_Comm_size(MPI_COMM_WORLD ,& numtasks);

9 MPI_Comm_rank(MPI_COMM_WORLD ,& taskid);

10 /** Read the local domain from an input file */

11 if(taskid == 0) globals = ReadFile("input");

12 /** And distribute it on all nodes */

13 MPI_Scatter(globals , NBLOCALS , MPI_DOUBLE ,

14 locals , NBLOCALS , MPI_DOUBLE , 0, MPI_COMM_WORLD);

15 do {

16 /** Update the domain , exchanging information with neighbors */

17 UpdateLocals(locals , NBLOCALS , taskid , numtasks);

18 /** Compute the local error */

19 local_error = LocalError(locals , NBLOCALS);

20 /** Compute the global error */

21 MPI_AllReduce (& local_error , &global_error , 1, MPI_DOUBLE ,

22 MPI_MAX , MPI_COMM_WORLD);

23 } while(global_error > THRESHOLD);

24 /** Output result to output file */

25 MPI_Gather(locals , NBLOCALS , MPI_DOUBLE ,

26 globals , NBLOCALS , MPI_DOUBLE , 0, MPI_COMM_WORLD);

27 if(taskid == 0) SaveFile("Result", globals);

28 MPI_Finalize ();

29 return 0;

30 }

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 40/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Example: MPI-1D Stencil

MPI 1D Stencil

Natural Synchronization Point

1 int main (int argc , char *argv [])

2 {

3 double locals[NBLOCALS], /* The local values */

4 *globals , /* all values , defined only for 0 */

5 local_error , global_error; /* Estimates of the error */

6 int taskid , numtasks; /* rank and world size */

7 MPI_Init (&argc ,&argv);

8 MPI_Comm_size(MPI_COMM_WORLD ,& numtasks);

9 MPI_Comm_rank(MPI_COMM_WORLD ,& taskid);

10 /** Read the local domain from an input file */

11 if(taskid == 0) globals = ReadFile("input");

12 /** And distribute it on all nodes */

13 MPI_Scatter(globals , NBLOCALS , MPI_DOUBLE ,

14 locals , NBLOCALS , MPI_DOUBLE , 0, MPI_COMM_WORLD);

15 do {

16 /** Update the domain , exchanging information with neighbors */

17 UpdateLocals(locals , NBLOCALS , taskid , numtasks);

18 /** Compute the local error */

19 local_error = LocalError(locals , NBLOCALS);

20 /** Compute the global error */

21 MPI_AllReduce (& local_error , &global_error , 1, MPI_DOUBLE ,

22 MPI_MAX , MPI_COMM_WORLD);

23 } while(global_error > THRESHOLD);

24 /** Output result to output file */

25 MPI_Gather(locals , NBLOCALS , MPI_DOUBLE ,

26 globals , NBLOCALS , MPI_DOUBLE , 0, MPI_COMM_WORLD);

27 if(taskid == 0) SaveFile("Result", globals);

28 MPI_Finalize ();

29 return 0;

30 }

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 40/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Example: MPI-1D Stencil

User-Level Checkpointing
1 do {

2 /** Update the domain , exchanging information with neighbors */

3 UpdateLocals(locals , NBLOCALS , taskid , numtasks);

4 /** Compute the local error */

5 local_error = LocalError(locals , NBLOCALS);

6 /** Compute the global error */

7 MPI_AllReduce (& local_error , &global_error , 1, MPI_DOUBLE ,

8 MPI_MAX , MPI_COMM_WORLD);

9 if(global_error > THRESHOLD && WantToCheckpoint ()) {

10 MPI_Gather(locals , NBLOCALS , MPI_DOUBLE ,

11 globals , NBLOCALS , MPI_DOUBLE , 0, MPI_COMM_WORLD);

12 if(taskid == 0) {

13 SaveFile("Checkpoint.new", globals);

14 rename("Checkpoint.new", "Checkpoint.last");

15 }

16 }

17 } while(global_error > THRESHOLD);

18 /** Output result to output file */

19 MPI_Gather(locals , NBLOCALS , MPI_DOUBLE ,

20 globals , NBLOCALS , MPI_DOUBLE , 0, MPI_COMM_WORLD);

21 if(taskid == 0) SaveFile("Result", globals);

22 MPI_Finalize ();

23 return 0;

24 }

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 41/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Example: MPI-1D Stencil

User-Level Checkpointing

Atomic Commit of the Valid Checkpoint

1 do {

2 /** Update the domain , exchanging information with neighbors */

3 UpdateLocals(locals , NBLOCALS , taskid , numtasks);

4 /** Compute the local error */

5 local_error = LocalError(locals , NBLOCALS);

6 /** Compute the global error */

7 MPI_AllReduce (& local_error , &global_error , 1, MPI_DOUBLE ,

8 MPI_MAX , MPI_COMM_WORLD);

9 if(global_error > THRESHOLD && WantToCheckpoint ()) {

10 MPI_Gather(locals , NBLOCALS , MPI_DOUBLE ,

11 globals , NBLOCALS , MPI_DOUBLE , 0, MPI_COMM_WORLD);

12 if(taskid == 0) {

13 SaveFile("Checkpoint.new", globals);

14 rename("Checkpoint.new", "Checkpoint.last");

15 }

16 }

17 } while(global_error > THRESHOLD);

18 /** Output result to output file */

19 MPI_Gather(locals , NBLOCALS , MPI_DOUBLE ,

20 globals , NBLOCALS , MPI_DOUBLE , 0, MPI_COMM_WORLD);

21 if(taskid == 0) SaveFile("Result", globals);

22 MPI_Finalize ();

23 return 0;

24 }

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 41/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Example: MPI-1D Stencil

User-Level Rollback

Read Checkpoint or Input

1 int main (int argc , char *argv [])

2 {

3 double locals[NBLOCALS], /* The local values */

4 *globals , /* all values , defined only for 0 */

5 local_error , global_error; /* Estimates of the error */

6 int taskid , numtasks; /* rank and world size */

7 MPI_Init (&argc ,&argv);

8 MPI_Comm_size(MPI_COMM_WORLD ,& numtasks);

9 MPI_Comm_rank(MPI_COMM_WORLD ,& taskid);

10 /** Read the local domain from an input file */

11 if(taskid == 0) globals = ReadFile(argv [1]);

12 /** And distribute it on all nodes */

13 MPI_Scatter(globals , NBLOCALS , MPI_DOUBLE ,

14 locals , NBLOCALS , MPI_DOUBLE , 0, MPI_COMM_WORLD);

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 42/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Application-Level Checkpointing – Gather Approach

User-Level Checkpointing

Gather approach requires for one node to hold the entire
checkpoint data

Basic UNIX File Operations provide tools to manage the risk
of failure during checkpoint creation

User-Level Rollback

In general, rollback is more complex:

Need to remember the progress of computation
Need to jump to the appropriate part of the code when
rollbacking

Time Overheads

Checkpoint time includes Gather time

Rollback time includes Scatter time

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 43/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors ConclusionApplication-Level Checkpointing – Distributed
Checkpointing Approach

Last Valid
Checkpoint

Ongoing
CheckpointDi

st
rib

ut
ed

Sh
ar

ed
Fi

le
s

Pr
oc

es
se

s

User-Level Distributed Checkpointing

In files: one file per node, or shared file accessed by
MPI File *

Atomic Commit of the last checkpoint might be a challenge

In Memory

+ Can be very fast (no I/O)
- Need a Fault-Tolerant MPI for hard failures (see hands on)
- Need to store 3 checkpoints in processes memory space (for

atomic commit)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 44/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors ConclusionApplication-Level Checkpointing – Distributed
Checkpointing Approach

Pr
oc

es
se

s

User-Level Distributed Checkpointing

In files: one file per node, or shared file accessed by
MPI File *

Atomic Commit of the last checkpoint might be a challenge

In Memory

+ Can be very fast (no I/O)
- Need a Fault-Tolerant MPI for hard failures (see hands on)
- Need to store 3 checkpoints in processes memory space (for

atomic commit)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 44/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Helping Libraries – SCR

Scalable Checkpoint Restart

Manages Reliability of Storage for the user

Manages Atomic Commit of Checkpoints

Entirely based on Files

Use local storage of files, as much as possible

Efficiency of local I/O
Risk of loosing data =⇒ Fault Tolerant storage (Replication,
or XOR)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 45/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Helping Libraries – SCR

SCR Example – Init
1 int main (int argc , char *argv [])

2 {

3 double locals[NBLOCALS], /* The local values */

4 *globals , /* all values , defined only for 0 */

5 local_error , global_error; /* Estimates of the error */

6 int taskid , numtasks; /* rank and world size */

7 char name [256] , scr_file_name[SCR_MAX_FILENAME];

8 FILE *f;

9 size_t n;

10 int rc , scr_want_to_checkpoint;

11
12 MPI_Init (&argc ,&argv);

13 SCR_Init ();

14 MPI_Comm_size(MPI_COMM_WORLD ,& numtasks);

15 MPI_Comm_rank(MPI_COMM_WORLD ,& taskid);

16
17 snprintf(name , "Checkpoint -%d", taskid);

18 if(SCR_Route_file("MyCheckpoint", scr_file_name) != SCR_SUCCESS) {

19 fprintf(stderr , "Checkpoint disabled -- aborting\n");

20 MPI_Abort(MPI_COMM_WORLD);

21 }

SCR Example – Fini
1 if(taskid == 0) SaveFile("Result", globals);

2 SCR_Finalize ();

3 MPI_Finalize ();

4 return 0;

5 }

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 46/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Helping Libraries – SCR

SCR Example – Checkpoint

1 do {

2 /** Update the domain , exchanging information with neighbors */

3 UpdateLocals(locals , NBLOCALS , taskid , numtasks);

4 /** Compute the local error */

5 local_error = LocalError(locals , NBLOCALS);

6 /** Compute the global error */

7 MPI_AllReduce (& local_error , &global_error , 1, MPI_DOUBLE ,

8 MPI_MAX , MPI_COMM_WORLD);

9 SCR_Need_checkpoint (& scr_want_to_checkpoint);

10 if(global_error > THRESHOLD && scr_want_to_checkpoint) {

11 SCR_Start_checkpoint ();

12 f = fopen(scr_file_name , "w");

13 if(NULL != f) {

14 n = fwrite(f, locals , NBLOCALS * sizeof(double));

15 rc = fclose(f);

16 }

17 SCR_Complete_checkpoint(f != NULL &&

18 n == NBLOCALS * sizeof(double) &&

19 rc == 0);

20 }

21 } while(global_error > THRESHOLD);

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 47/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Helping Libraries – SCR

SCR Example – Restart

1 if(argc > 1 && (strcmp(argv[1], "-restart") == 0)) {

2 f = fopen(scr_file_name , "r");

3 if(NULL != f) {

4 n = fread(f, locals , NBLOCALS * sizeof(double));

5 rc = fclose(f);

6 }

7 if(f == NULL ||

8 n != NBLOCALS * sizeof(double) ||

9 rc != 0) {

10 fprintf(stderr , "Unable to read checkpoint file\n");

11 MPI_Abort(MPI_COMM_WORLD);

12 }

13 } else {

14 /** Read the local domain from an input file */

15 if(taskid == 0) globals = ReadFile(argv [1]);

16 /** And distribute it on all nodes */

17 MPI_Scatter(globals , NBLOCALS , MPI_DOUBLE ,

18 locals , NBLOCALS , MPI_DOUBLE , 0, MPI_COMM_WORLD);

19 }

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 48/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Helping Libraries – FTI

Fault Tolerance Interface

Manages Reliability of Storage for the user

Manages Atomic Commit of Checkpoints

Manages Transparent Restarts for the user

Spawns new MPI processes to shadow the existing ones, and
manage in-memory checkpoints

Relies on implementation-specific behaviors for MPI
Falls back on files in case of non-compliant MPI
implementation

Storage hierarchy: memory, local file, distributed file system

Fault Tolerant Storage algorithms: replication, Reed-Solomon
Encoding
Computation might be offloaded to GPUs

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 49/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Helping Libraries – FTI

FTI Example – Init
1 int main (int argc , char *argv [])

2 {

3 double locals[NBLOCALS], /* The local values */

4 *globals , /* all values , defined only for 0 */

5 local_error , global_error; /* Estimates of the error */

6 int taskid , numtasks; /* rank and world size */

7
8 MPI_Init (&argc ,&argv);

9 FTI_Init("conf.fti", MPI_COMM_WORLD);

10 MPI_Comm_size(MPI_COMM_WORLD ,& numtasks);

11 MPI_Comm_rank(MPI_COMM_WORLD ,& taskid);

SCR Example – Fini
1 if(taskid == 0) SaveFile("Result", globals);

2 FTI_Finalize ();

3 MPI_Finalize ();

4 return 0;

5 }

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 50/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Helping Libraries – FTI

FTI Example – Checkpoint

1 /** Read the local domain from an input file */

2 if(taskid == 0) globals = ReadFile(argv [1]);

3 /** And distribute it on all nodes */

4 MPI_Scatter(globals , NBLOCALS , MPI_DOUBLE ,

5 locals , NBLOCALS , MPI_DOUBLE , 0, MPI_COMM_WORLD);

6
7 FTI_Protect (0, locals , NBLOCALS * sizeof(double), FTI_DFLT);

8
9 do {

10 /** Update the domain , exchanging information with neighbors */

11 UpdateLocals(locals , NBLOCALS , taskid , numtasks);

12 /** Compute the local error */

13 local_error = LocalError(locals , NBLOCALS);

14 /** Compute the global error */

15 MPI_AllReduce (& local_error , &global_error , 1, MPI_DOUBLE ,

16 MPI_MAX , MPI_COMM_WORLD);

17 FTI_Snapshot ();

18 } while(global_error > THRESHOLD);

FTI Snapshot decides if checkpoint is needed or not, and:

sets a jump point to the current position in the executable
saves ’protected’ variables

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 51/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Helping Libraries – FTI

FTI Example – Restart

1 FTI_Protect (0, locals , NBLOCALS * sizeof(double), FTI_DFLT);

2
3 do {

4 /** Update the domain , exchanging information with neighbors */

5 UpdateLocals(locals , NBLOCALS , taskid , numtasks);

6 /** Compute the local error */

7 local_error = LocalError(locals , NBLOCALS);

8 /** Compute the global error */

9 MPI_AllReduce (& local_error , &global_error , 1, MPI_DOUBLE ,

10 MPI_MAX , MPI_COMM_WORLD);

11 FTI_Snapshot ();

12 } while(global_error > THRESHOLD);

FTI Init jumps, if needed, to the checkpoint’s jump point,
making the restart transparent

Non-protected variables are not restored: the code should not
depend on them
Restoration assumes that the memory map is restored to the
same (OS-dependent)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 52/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Helping Libraries – GVR

Global View Resilience

Manages Reliability of Storage for the user

Global View Resilience provides a reliable tuple-space for users
to store persistent data. E.g., checkpoints

Storage is entirely in memory, in independent processes
accessible through the GVR API.

Spatial redundancy – coding at multiple levels
Temporal redundancy - Multi-version memory, integrated
memory and NVRAM management

Partitionned Global Address Space approach

Data resides in the global GVR space, local values for specific
versions are pulled for rollback, pushed for checkpoints

Code is very different from the ones seen above, and outside
the scope of this tutorial

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 53/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)
Process Checkpointing
Coordinated Checkpointing
Application-Level Checkpointing
Hierarchical checkpointing

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 54/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Uncoordinated Checkpointing Idea

Processes checkpoint independently

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 55/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Uncoordinated Checkpointing Idea

Optimistic Protocol

Each process i keeps some checkpoints C j
i

∀(i1, . . . in),∃jk/{C jk
ik
} form a consistent cut?

Domino Effect

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 55/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Piece-wise Deterministic Assumption

Nondeterministic
Choice

Deterministic
Sequence

Piece-wise Deterministic Assumption

Process: alternate sequence of non-deterministic choice and
deterministic steps

Translated in Message Passing:

Receptions / Progress test are non-deterministic
(MPI Wait(ANY SOURCE),
if(MPI Test())<...>; else <...>)
Emissions / others are deterministic

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 56/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Message Logging

A

B

P

n emission to A (from B)

m reception from B (on A)

Unique Identifeir: (B, n, A, m)
Payload: P

th

th

F T
i probe: falseth

i +1 probe: trueth

Message Logging

By replaying the sequence of messages and test/probe with the
result obtained during the initial execution (from the last
checkpoint), one can guide the execution of a process to its exact
state just before the failure

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 57/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Message Logging

A

B

P

n emission to A (from B)

m reception from B (on A)

Unique Identifeir: (B, n, A, m)
Payload: P

th

th

F T
i probe: falseth

i +1 probe: trueth

Message / Events

Message = unique identifier (source, emission index,
destination, reception index) + payload (content of the
message)

Probe = unique identifier (number of consecutive
failed/success probes on this link)

Event Logging: saving the unique identifier of a message, or
of a probe

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 57/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Message Logging

A

B

P

n emission to A (from B)

m reception from B (on A)

Unique Identifeir: (B, n, A, m)
Payload: P

th

th

F T
i probe: falseth

i +1 probe: trueth

Message / Events

Payload Logging: saving the content of a message

Message Logging: saving the unique identifier and the payload
of a message, saving unique identifiers of probes, saving the
(local) order of events

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 57/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Message Logging

P

P

Q

Q
Checkpoint

P will never be
requested again

Checkpoint

Q Q might be requested
if A and B rollback

A

B

Where to save the Payload?

Almost always as Sender Based

Local copy: less impact on performance

More memory demanding → trade-off garbage collection
algorithm

Payload needs to be included in the checkpoints

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 58/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Message Logging

Where to save the Events?

Events must be saved on a reliable space

Must avoid: loss of events ordering information, for all events
that can impact the outgoing communications

Two (three) approaches: pessimistic + reliable system, or
causal, (or optimistic)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 59/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Optimistic Message Logging

P

Q

A

B

C

Event Log

R

S

Where to save the Events?

On a reliable media, asynchronously

“Hope that the event will have time to be logged” (before its
loss is damageable)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 60/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Optimistic Message Logging

(A, 1, B, ?) P

Q

(A, 1, B, 1)

A

B

C

Event Log

P

R

S

Where to save the Events?

On a reliable media, asynchronously

“Hope that the event will have time to be logged” (before its
loss is damageable)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 60/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Optimistic Message Logging

(A, 1, B, ?) P

Q

(A, 1, B, 1) Ack

A

B

C

Event Log

P

R

S

Where to save the Events?

On a reliable media, asynchronously

“Hope that the event will have time to be logged” (before its
loss is damageable)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 60/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Optimistic Message Logging

(A, 1, B, ?) P

(C, 3, B, ?) Q

(A, 1, B, 1) Ack
(C, 3, B, 5)

Ack

A

B

C

Event Log

Q

P

Where to save the Events?

On a reliable media, asynchronously

“Hope that the event will have time to be logged” (before its
loss is damageable)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 60/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Optimistic Message Logging

(A, 1, B, ?) P

(C, 3, B, ?) Q

(A, 1, B, 1) Ack
(C, 3, B, 5)

Ack

A

B

C

Event Log

Q

P

Danger
Zone

Where to save the Events?

On a reliable media, asynchronously

“Hope that the event will have time to be logged” (before its
loss is damageable)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 60/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Pessimistic Message Logging

P

Q

A

B

C

Event Log

R

S

Where to save the Events?

On a reliable media, synchronously

Delay of emissions that depend on non-deterministic choices
until the corresponding choice is acknowledged

Recovery: connect to the storage system to get the history

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 61/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Pessimistic Message Logging

(A, 1, B, ?) P

(C, 3, B, ?) Q

(A, 1, B, 1) Ack
(C, 3, B, 5)

Ack

A

B

C

Event Log

Q

P

Emission
Delayed

Where to save the Events?

On a reliable media, synchronously

Delay of emissions that depend on non-deterministic choices
until the corresponding choice is acknowledged

Recovery: connect to the storage system to get the history

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 61/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Causal Message Logging

(A, 1, B, ?) P

(C, 3, B, ?) Q

(A, 1, B, 1) Ack
(C, 3, B, 5)

Ack

A

B

C

Event Log

Q

P

msg + (C, 3, B, 5)

msg

Where to save the Events?

Any message carries with it (piggybacked) the whole history
of non-deterministic events that precede

Garbage collection using checkpointing, detection of cycles

Can be coupled with asynchronous storage on reliable media
to help garbage collection

Recovery: global communication + potential storage system
{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 62/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Recover in Message Logging

Resend: P

A

B

C

Event Log

R

S

CK
PT

(A, 1, B, 1)
(C, 3, B, 5)

Received: empty

Received: R Resend: Q

Recovery

Collect the history (from event log / event log + peers for
Causal)

Collect Id of last message sent

Emitters resend, deliver in history order

Fake emission of sent messages

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 63/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Uncoordinated Protocol Performance

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 36 64 121 256

O
ve

rh
ea

d

BT Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 36 64 121 256

O
ve

rh
ea

d

BT Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 36 64 121 256

O
ve

rh
ea

d

BT Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

BT Class C CG Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

BT Class C CG Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

BT Class C CG Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

BT Class C CG Class C FT Class C

standard

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

BT Class C CG Class C FT Class C

standard
pessimist

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

BT Class C CG Class C FT Class C

standard
pessimist

optimist

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

O
ve

rh
ea

d

Number of Processes

BT Class C CG Class C FT Class C

LU Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

O
ve

rh
ea

d

Number of Processes

BT Class C CG Class C FT Class C

LU Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

O
ve

rh
ea

d

Number of Processes

BT Class C CG Class C FT Class C

LU Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256
Number of Processes

BT Class C CG Class C FT Class C

LU Class C MG Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256
Number of Processes

BT Class C CG Class C FT Class C

LU Class C MG Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256
Number of Processes

BT Class C CG Class C FT Class C

LU Class C MG Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 36 64 121 256
Number of Processes

BT Class C CG Class C FT Class C

LU Class C MG Class C SP Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 36 64 121 256
Number of Processes

BT Class C CG Class C FT Class C

LU Class C MG Class C SP Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 36 64 121 256
Number of Processes

BT Class C CG Class C FT Class C

LU Class C MG Class C SP Class C

Fig. 5. Scalability comparison of pessimistic and optimistic message logging protocols on the NAS Benchmarks on Gigabit Ethernet

B. Scalability

In order to evaluate the comparative scalability of the
two protocols we plot the normalized execution time of the
NAS kernels according to a growing number of processors
(figure 5). While in previous experiments (figures 3) we specif-
ically outlined the differences caused by non-deterministic
events, in this phase of the comparison we focus on widely
used application kernels. Among the NAS kernels, only two
generates non deterministic events: MG and LU. As a conse-
quence, the executions of the two protocols are very similar
and exhibit the same scalability. Overall, the overhead induced
by the sender-based payload copy mechanism stays under 10%
on these benchmarks.

The only benchmark showing a different scalability pattern
is LU. The number of non-deterministic events grows with
the size of the application, making the optimistic protocol 6%
more efficient than the pessimistic one for 256 processes.

C. Isolating Event Logging Overhead

Figure 6 presents the performance of all the NAS kernels
for 64 processes on the Myrinet network. Every kernel is
evaluated with or without the sender-based mechanism being
active. While it is a required component for a successful
recovery, deactivating the sender-based overhead reveals the
performance differences imputable to the event logging proto-
cols. As expected, the performance of event logging exhibits
almost no differences between the protocols on the bench-
marks where there is no non-deterministic events. Even on
those with non-deterministic events, the performance varies

bt.c.64 ft.c.64 lu.c.64 mg.c.64 sp.c.64 cg.c.64

NAS Kernel

1

1.02

1.04

1.06

1.08

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Pessimist
Optimist
Pessimist (Event Logging only)
Optimist (Event Logging only)

Fig. 6. Normalized performance of the NAS kernels on the Myrinet 10G
network (Open MPI=1).

only by less than 2%, which is close to the error margin
of measurements. On this faster network, the sender-based
overhead clearly dominates the performance and flattens any
performance difference coming from the synchronicity of the
event logging.

D. Event Logging Overhead Breakdown

To evaluate the cost of event logging in the protocols, we
used a small ping-pong test with 2 processes. The any source
flag was used in order to generate a non-deterministic event
for every message reception. Results are presented in Table I.
First, when a non deterministic event is created, it has to

Uncoordinated Protocol Performance

NAS Parallel Benchmarks – 64 nodes

High Performance Linpack

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 64/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Hierarchical Protocols

Many Core Systems

All interactions between threads considered as a message

Explosion of number of events

Cost of message payload logging ≈ cost of communicating →
sender-based logging expensive

Correlation of failures on the node

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 65/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Hierarchical Protocols

Hierarchical Protocol

Processes are separated in groups

A group co-ordinates its checkpoint

Between groups, use message logging

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 66/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Hierarchical Protocols

Hierarchical Protocol

Coordinated Checkpointing: the processes can behave as a
non-deterministic entity (interactions between processes)

Need to log the non-deterministic events: Hierarchical
Protocols are uncoordinated protocols + event logging

No need to log the payload

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 66/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Event Log Reduction

Strategies to reduce the amount of event log

Few HPC applications use message ordering / timing
information to take decisions

Many receptions (in MPI) are in fact deterministic: do not
need to be logged

For others, although the reception is non-deterministic, the
order does not influence the interactions of the process with
the rest (send-determinism). No need to log either

Reduction of the amount of log to a few applications, for a
few messages: event logging can be overlapped

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 67/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Hierarchical Protocol Performance

BT

CGFT

IS

MG SP

Perf. Regular Message Logging / Perf. Vanilla
Perf. Coordinated Message Logging / Perf. Vanilla

50%
60%

80%
90%

100%

Fig. 5. NAS performance (Pluto platform, shared memory, 32/36 cores)

algorithm maintains the dependency graph of events and checkpoints to compute
Z-paths as the execution progresses. Forced checkpoints are taken whenever a
Z-path would become a consistency breaking Z-cycle. This approach has several
drawbacks: it adds piggyback to messages, and is notably not scalable because
the number of forced checkpoints grows uncontrollably [1].

Group coordinated checkpoint have been proposed in MVAPICH2 [10] to
solve I/O storming issues in coordinated checkpointing. In this paper, the group
coordination refers to a particular scheduling of the checkpoint tra�c, intended
to avoid overwhelming the I/O network. Unlike our approach, which is partially
uncoordinated, this algorithm builds a completely coordinated recovery set.

In [11], Ho, Wang and Lau propose a group-based approach that combines
coordinated and uncoordinated checkpointing, similar to the technique we use in
this paper, to reduce the cost of message logging in uncoordinated checkpointing.
Their work, however, focuses on communication patterns of the application, to
reduce the amount of message logging. Similarly, in the context of Charm++ [13],
and AMPI[16], Meneses, Mendes and Kalé have proposed in [8] a team-based
approach to reduce the overhead of message logging. The Charm++ model advo-
cates a high level of oversubscription, with a ratio of user-level thread per core
much larger than one. In their work, teams are of fixed, predetermined sizes.
The paper does not explicitly explain how teams are built, but an emphasis on
communication patterns seems preferred. In contrast, our work takes advantage
of hardware properties of the computing resources, proposing to build correlated
groups based on likeliness of failures, and relative e�ciency of the communication
medium.

 0

 100

 200

 300

 400

 500

 600

 3600 7200 10080
 14220

 17460
 19980

 24480

Pe
rfo

rm
an

ce
 (G

Fl
op

/s
)

Matrix size (N)

Theoretical peak
Vanilla Open MPI

Coordinated Message Logging
Regular Message Logging

Fig. 6. HPL cluster performance (Dancer cluster, IB20G, 8 nodes, 64 cores)

6 Concluding Remarks

In this paper, we proposed a novel approach combining the best features of coor-
dinated and uncoordinated checkpointing. The resulting fault tolerant protocol,
belonging to the event logging protocol family, spares the payload logging for
messages belonging to a correlated set, but retains uncoordinated recovery scal-
ability. The benefit on shared memory point-to-point performance is significant,
which translates into an observable improvement of many application types.
Even though inter-node communications are not modified by this approach, the
shared memory speedup translates into a reduced overhead on cluster of mul-
ticore type platforms. Last, the memory required to hold message payload is
greatly reduced; our algorithm provides a flexible control of the tradeo↵ between
synchronization and memory consumption. Overall, this work greatly improves
the applicability of message logging in the context of distributed systems based
on a large number of many-core nodes.

Acknowledgement

This work was partially supported by the DOE Cooperative Agreement DE-
FC02-06ER25748, and the INRIA-Illinois Joint Laboratory for Petascale Com-
puting and the ANR RESCUE project.

References

1. Alvisi, L., Elnozahy, E., Rao, S., Husain, S.A., Mel, A.D.: An analysis of communi-
cation induced checkpointing. In: 29th Symposium on Fault-Tolerant Computing
(FTCS’99). IEEE CS Press (june 1999)

Hierarchical Protocol Performance

NAS Parallel Benchmarks – shared memory system, 32 cores

HPL distributed system, 64 cores, 8 groups

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 68/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

General Techniques for Rollback Recovery – Conclusion

Summary

Checkpointing is a general mechanism that is used for many
reasons, including rollback-recovery fault-tolerance

There is a variety of protocols that coordinate (or not) the
checkpoints, and complement them with necessary information

A critical element of performance of General Purpose
Rollback-Recovery is how often checkpoints are taken

Other critical elements are the time to checkpoint (dominated
by size of the data to checkpoint), and how processes are
synchronized

Coming Next

To understand how each element impacts the performance of
rollback-recovery, we need to build performance models for these

protocols.

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 69/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)
Young/Daly’s approximation
Exponential distributions
Assessing protocols at scale
In-memory checkpointing
Failure Prediction
Replication

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 70/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)
Young/Daly’s approximation
Exponential distributions
Assessing protocols at scale
In-memory checkpointing
Failure Prediction
Replication

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 71/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Periodic checkpointing

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

Blocking model: while a checkpoint is taken, no computation can
be performed

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 72/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Framework

Periodic checkpointing policy of period T

Independent and identically distributed failures

Applies to a single processor with MTBF µ = µind
Applies to a platform with p processors and MTBF µ = µind

p

coordinated checkpointing
tightly-coupled application
progress ⇔ all processors available

⇒ platform = single (powerful, unreliable) processor ,

Waste: fraction of time not spent for useful computations

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 73/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Waste in fault-free execution

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working Timebase: application base time

TimeFF: with periodic checkpoints
but failure-free

TimeFF = Timebase + #checkpoints × C

#checkpoints =

⌈
Timebase

T − C

⌉
≈ Timebase

T − C
(valid for large jobs)

Waste[FF] =
TimeFF −Timebase

TimeFF
=

C

T

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 74/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Waste due to failures

Timebase: application base time

TimeFF: with periodic checkpoints but failure-free

Timefinal: expectation of time with failures

Timefinal = TimeFF + Nfaults × Tlost

Nfaults number of failures during execution
Tlost: average time lost per failure

Nfaults =
Timefinal

µ

Tlost?

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 75/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Waste due to failures

Timebase: application base time

TimeFF: with periodic checkpoints but failure-free

Timefinal: expectation of time with failures

Timefinal = TimeFF + Nfaults × Tlost

Nfaults number of failures during execution
Tlost: average time lost per failure

Nfaults =
Timefinal

µ

Tlost?

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 75/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Computing Tlost

T

CT − CRDTlost

P1

P0

P3

P2

Time spent working Time spent checkpointing

Recovery timeDowntime Time

Tlost = D + R +
T

2

Rationale
⇒ Instants when periods begin and failures strike are independent
⇒ Approximation used for all distribution laws
⇒ Exact for Exponential and uniform distributions

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 76/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Waste due to failures

Timefinal = TimeFF + Nfaults × Tlost

Waste[fail] =
Timefinal −TimeFF

Timefinal
=

1

µ

(
D + R +

T

2

)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 77/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Total waste

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

Waste =
Timefinal −Timebase

Timefinal

1−Waste = (1−Waste[FF])(1−Waste[fail])

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 78/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Waste minimization

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)
Waste =

u

T
+ v + wT

u = C
(
1− D + R

µ

)
v =

D + R − C/2

µ
w =

1

2µ

Waste minimized for T =
√

u
w

T =
√

2(µ− (D + R))C

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 79/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Comparison with Young/Daly

TimeFF =TimeFinal (1-Waste[Fail]) TimeFinal ×Waste[Fail]

TimeFinal

T -C C T -C C T -C C T -C C T -C C

(
1−Waste[fail]

)
Timefinal = TimeFF

⇒ T =
√

2(µ− (D + R))C

Daly: Timefinal =
(
1 + Waste[fail]

)
TimeFF

⇒ T =
√

2(µ+ (D + R))C + C

Young: Timefinal =
(
1 + Waste[fail]

)
TimeFF and D = R = 0

⇒ T =
√

2µC + C

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 80/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Validity of the approach (1/3)

Technicalities

E (Nfaults) = Timefinal
µ and E (Tlost) = D + R + T

2
but expectation of product is not product of expectations
(not independent RVs here)

Enforce C ≤ T to get Waste[FF] ≤ 1

Enforce D + R ≤ µ and bound T to get Waste[fail] ≤ 1
but µ = µind

p too small for large p, regardless of µind

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 81/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Validity of the approach (2/3)

Several failures within same period?

Waste[fail] accurate only when two or more faults do not
take place within same period

Cap period: T ≤ γµ, where γ is some tuning parameter

Poisson process of parameter θ = T
µ

Probability of having k ≥ 0 failures : P(X = k) = θk

k! e−θ

Probability of having two or more failures:
π = P(X ≥ 2) = 1− (P(X = 0) + P(X = 1)) = 1− (1 +θ)e−θ

γ = 0.27 ⇒ π ≤ 0.03
⇒ overlapping faults for only 3% of checkpointing segments

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 82/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Validity of the approach (3/3)

Enforce T ≤ γµ, C ≤ γµ, and D + R ≤ γµ

Optimal period
√

2(µ− (D + R))C may not belong to
admissible interval [C , γµ]

Waste is then minimized for one of the bounds of this
admissible interval (by convexity)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 83/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Wrap up

Capping periods, and enforcing a lower bound on MTBF
⇒ mandatory for mathematical rigor /

Not needed for practical purposes ,
• actual job execution uses optimal value
• account for multiple faults by re-executing work until success

Approach surprisingly robust ,

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 84/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Lesson learnt for fail-stop failures

(Not so) Secret data
• Tsubame 2: 962 failures during last 18 months so µ = 13 hrs
• Blue Waters: 2-3 node failures per day
• Titan: a few failures per day
• Tianhe 2: wouldn’t say

Topt =
√

2µC ⇒ Waste[opt] ≈
√

2C

µ

Petascale: C = 20 min µ = 24 hrs ⇒ Waste[opt] = 17%
Scale by 10: C = 20 min µ = 2.4 hrs ⇒ Waste[opt] = 53%
Scale by 100: C = 20 min µ = 0.24 hrs ⇒ Waste[opt] = 100%

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 85/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Lesson learnt for fail-stop failures

(Not so) Secret data
• Tsubame 2: 962 failures during last 18 months so µ = 13 hrs
• Blue Waters: 2-3 node failures per day
• Titan: a few failures per day
• Tianhe 2: wouldn’t say

Topt =
√

2µC ⇒ Waste[opt] ≈
√

2C

µ

Petascale: C = 20 min µ = 24 hrs ⇒ Waste[opt] = 17%
Scale by 10: C = 20 min µ = 2.4 hrs ⇒ Waste[opt] = 53%
Scale by 100: C = 20 min µ = 0.24 hrs ⇒ Waste[opt] = 100%

Exascale 6= Petascale ×1000
Need more reliable components

Need to checkpoint faster

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 85/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Lesson learnt for fail-stop failures

(Not so) Secret data
• Tsubame 2: 962 failures during last 18 months so µ = 13 hrs
• Blue Waters: 2-3 node failures per day
• Titan: a few failures per day
• Tianhe 2: wouldn’t say

Topt =
√

2µC ⇒ Waste[opt] ≈
√

2C

µ

Petascale: C = 20 min µ = 24 hrs ⇒ Waste[opt] = 17%
Scale by 10: C = 20 min µ = 2.4 hrs ⇒ Waste[opt] = 53%
Scale by 100: C = 20 min µ = 0.24 hrs ⇒ Waste[opt] = 100%

Silent errors:

detection latency ⇒ additional problems

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 85/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)
Young/Daly’s approximation
Exponential distributions
Assessing protocols at scale
In-memory checkpointing
Failure Prediction
Replication

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 86/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Exponential failure distribution

1 Expected execution time for a single chunk

2 Expected execution time for a sequential job

3 Expected execution time for a parallel job

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 87/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

E(T (W)) =

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 88/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

of success

Probability

Psucc(W + C) (W + C)

E(T (W)) =

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 88/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach
Time needed

the work W and

to compute

checkpoint it

Psucc(W + C) (W + C)

E(T (W)) =

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 88/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

Probability of failure

(1− Psucc(W + C)) (E(Tlost(W + C)) + E(Trec) + E(T (W)))

+

Psucc(W + C) (W + C)

E(T (W)) =

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 88/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

Time elapsed

before failure

stroke

+

(1− Psucc(W + C)) (E(Tlost(W + C)) + E(Trec) + E(T (W)))

Psucc(W + C) (W + C)

E(T (W)) =

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 88/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

Time needed

to perform

downtime

and recovery

+

(1− Psucc(W + C)) (E(Tlost(W + C)) + E(Trec) + E(T (W)))

Psucc(W + C) (W + C)

E(T (W)) =

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 88/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Expected execution time for a single chunk

Compute the expected time E(T (W ,C ,D,R, λ)) to execute a
work of duration W followed by a checkpoint of duration C .

Recursive Approach

Time needed

to compute W
anew

+

(1− Psucc(W + C)) (E(Tlost(W + C)) + E(Trec) + E(T (W)))

Psucc(W + C) (W + C)

E(T (W)) =

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 88/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Computation of E(T (W ,C ,D,R , λ))

+

(1− Psucc(W + C)) (E(Tlost(W + C)) + E(Trec) + E(T (W)))

Psucc(W + C) (W + C)

E(T (W)) =

Psuc(W + C) = e−λ(W+C)

E(Tlost(W + C)) =
∫∞

0
xP(X = x |X < W + C)dx = 1

λ − W+C
eλ(W+C)−1

E(Trec) = e−λR(D+R)+(1−e−λR)(D+E(Tlost(R))+E(Trec))

E(T (W ,C ,D,R, λ)) = eλR
(

1
λ + D

)
(eλ(W+C) − 1)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 89/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Checkpointing a sequential job

E(T (W)) = eλR
(

1
λ + D

) (∑K
i=1 eλ(Wi+C) − 1)

Optimal strategy uses same-size chunks (convexity)

K0 = λW
1+L(−e−λC−1)

where L(z)eL(z) = z (Lambert function)

Optimal number of chunks K ∗ is max(1, bK0c) or dK0e

Eopt(T (W)) = K ∗
(

eλR
(

1

λ
+ D

))(
eλ(W

K∗+C)−1
)

Can also use Daly’s second-order approximation

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 90/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Checkpointing a parallel job

p processors ⇒ distribution Exp(λp), where λp = pλ

Use W (p), C (p), R(p) in Eopt(T (W)) for a distribution
Exp(λp = pλ)

Job types

Perfectly parallel jobs: W (p) = W /p.
Generic parallel jobs: W (p) = W /p + δW
Numerical kernels: W (p) = W /p + δW 2/3/

√
p

Checkpoint overhead

Proportional overhead: C (p) = R(p) = δV /p = C/p
(bandwidth of processor network card/link is I/O bottleneck)
Constant overhead: C (p) = R(p) = δV = C
(bandwidth to/from resilient storage system is I/O bottleneck)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 91/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Weibull failure distribution

No optimality result known

Heuristic: maximize expected work before next failure

Dynamic programming algorithms
- Use a time quantum
- Trim history of previous failures

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 92/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)
Young/Daly’s approximation
Exponential distributions
Assessing protocols at scale
In-memory checkpointing
Failure Prediction
Replication

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 93/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Which checkpointing protocol to use?

Coordinated checkpointing

, No risk of cascading rollbacks

, No need to log messages

/ All processors need to roll back

/ Rumor: May not scale to very large platforms

Hierarchical checkpointing

/ Need to log inter-groups messages
• Slowdowns failure-free execution
• Increases checkpoint size/time

, Only processors from failed group need to roll back

, Faster re-execution with logged messages

, Rumor: Should scale to very large platforms

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 94/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Blocking vs. non-blocking

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

Blocking model: checkpointing blocks all computations

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 95/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Blocking vs. non-blocking

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunk

Processing the first chunk

Time

Time spent checkpointing

Time spent working

Non-blocking model: checkpointing has no impact on
computations (e.g., first copy state to RAM, then copy RAM to
disk)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 95/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Blocking vs. non-blocking

Checkpointing

the first chunk

Computing the first chunk

Processing the first chunk

Time

Time spent working

Time spent checkpointing

Time spent working with slowdown

General model: checkpointing slows computations down: during
a checkpoint of duration C , the same amount of computation is
done as during a time αC without checkpointing (0 ≤ α ≤ 1)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 95/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Waste in fault-free execution

T

CT − C

P1

P0

P3

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Time elapsed since last checkpoint: T

Amount of computations executed: Work = (T − C) + αC

Waste[FF] = T−Work
T

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 96/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Waste due to failures

P0

P3

P2

P1

Time spent checkpointingTime spent working Time spent working with slowdown

Time

Failure can happen

1 During computation phase

2 During checkpointing phase

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 96/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Waste due to failures

P2

P1

P3

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Time

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 96/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Waste due to failures

P2

P1

P3

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Time

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 96/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Waste due to failures

Tlost

P1

P3

P0

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Time

Coordinated checkpointing protocol: when one processor is victim
of a failure, all processors lose their work and must roll back to last
checkpoint

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 96/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Waste due to failures in computation phase

D

P0

P2

P1

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Downtime Time

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 96/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Waste due to failures in computation phase

R

P2

P1

P3

P0

Time spent checkpointingTime spent working Time spent working with slowdown

Recovery timeDowntime Time

Coordinated checkpointing protocol: all processors must recover
from last checkpoint

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 96/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Waste due to failures in computation phase

C αC

P3

P2

P1

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Redo the work destroyed by the failure, that was done in the
checkpointing phase before the computation phase

But no checkpoint is taken in parallel, hence this re-execution is
faster than the original computation

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 96/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Waste due to failures in computation phase

T − C

P1

P0

P3

P2

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Re-execute the computation phase

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 96/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Waste due to failures in computation phase

C

P3

P2

P1

P0

Time spent checkpointingTime spent working Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime Time

Finally, the checkpointing phase is executed

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 96/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Total waste

∆

αC CT − CRDTlost

P0

P2

P1

P3

Time spent working Time spent checkpointing Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime

T

Time

Waste[fail] =
1

µ

(
D + R + αC +

T

2

)
Optimal period Topt =

√
2(1− α)(µ− (D + R + αC))C

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 96/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Hierarchical checkpointing

T

α(G−g+1)C

RD G .C

T−G .C−Tlost

TlostTlost

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Processors partitioned into G groups

Each group includes q processors

Inside each group: coordinated checkpointing in time C (q)

Inter-group messages are logged

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 97/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Accounting for message logging: Impact on work

/ Logging messages slows down execution:
⇒ Work becomes λWork, where 0 < λ < 1
Typical value: λ ≈ 0.98

, Re-execution after a failure is faster:
⇒ Re-Exec becomes Re-Exec

ρ , where ρ ∈ [1..2]
Typical value: ρ ≈ 1.5

Waste[FF] =
T − λWork

T

Waste[fail] =
1

µ

(
D(q) + R(q) +

Re-Exec

ρ

)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 98/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Accounting for message logging: Impact on checkpoint size

Inter-groups messages logged continuously

Checkpoint size increases with amount of work executed
before a checkpoint /
C0(q): Checkpoint size of a group without message logging

C (q) = C0(q)(1 + βWork)⇔ β =
C (q)− C0(q)

C0(q)Work

Work = λ(T − (1− α)GC (q))

C (q) =
C0(q)(1 + βλT)

1 + GC0(q)βλ(1− α)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 99/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Three case studies

Coord-IO
Coordinated approach: C = CMem = Mem

bio

where Mem is the memory footprint of the application

Hierarch-IO
Several (large) groups, I/O-saturated
⇒ groups checkpoint sequentially

C0(q) =
CMem

G
=

Mem

G bio

Hierarch-Port
Very large number of smaller groups, port-saturated
⇒ some groups checkpoint in parallel
Groups of qmin processors, where qminbport ≥ bio

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 100/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Three applications

1 2D-stencil

2 Matrix product
3 3D-Stencil

Plane
Line

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 101/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Four platforms: basic characteristics

Name Number of Number of Number of cores Memory I/O Network Bandwidth (bio) I/O Bandwidth (bport)
cores processors ptotal per processor per processor Read Write Read/Write per processor

Titan 299,008 16,688 16 32GB 300GB/s 300GB/s 20GB/s
K-Computer 705,024 88,128 8 16GB 150GB/s 96GB/s 20GB/s

Exascale-Slim 1,000,000,000 1,000,000 1,000 64GB 1TB/s 1TB/s 200GB/s
Exascale-Fat 1,000,000,000 100,000 10,000 640GB 1TB/s 1TB/s 400GB/s

Name Scenario G (C (q)) β for β for
2D-Stencil Matrix-Product

Coord-IO 1 (2,048s) / /
Titan Hierarch-IO 136 (15s) 0.0001098 0.0004280

Hierarch-Port 1,246 (1.6s) 0.0002196 0.0008561

Coord-IO 1 (14,688s) / /
K-Computer Hierarch-IO 296 (50s) 0.0002858 0.001113

Hierarch-Port 17,626 (0.83s) 0.0005716 0.002227

Coord-IO 1 (64,000s) / /
Exascale-Slim Hierarch-IO 1,000 (64s) 0.0002599 0.001013

Hierarch-Port 200,0000 (0.32s) 0.0005199 0.002026

Coord-IO 1 (64,000s) / /
Exascale-Fat Hierarch-IO 316 (217s) 0.00008220 0.0003203

Hierarch-Port 33,3333 (1.92s) 0.00016440 0.0006407

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 102/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Checkpoint time

Name C

K-Computer 14,688s

Exascale-Slim 64,000

Exascale-Fat 64,000

Large time to dump the memory

Using 1%C

Comparing with 0.1%C for exascale platforms

α = 0.3, λ = 0.98 and ρ = 1.5

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 103/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Plotting formulas – Platform: Titan

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µind

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 104/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Platform: K-Computer

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µind

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 105/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 106/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!

Goodbye Exascale?!

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 106/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Plotting formulas – Platform: Exascale with C = 1, 000

Stencil 2D Matrix product Stencil 3D
E

xa
sc

al
e-

S
lim

E
xa

sc
al

e-
F

at

Waste as a function of processor MTBF µind , C = 1, 000

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 107/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Plotting formulas – Platform: Exascale with C = 100

Stencil 2D Matrix product Stencil 3D
E

xa
sc

al
e-

S
lim

E
xa

sc
al

e-
F

at

Waste as a function of processor MTBF µind , C = 100

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 108/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Simulations – Platform: Titan

Stencil 2D Matrix product

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100
M

ak
es

p
an

 (
d
ay

s)
MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k
e
s
p
a
n

(
d
a
y
s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k
e
s
p
a
n

(
d
a
y
s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

Makespan (in days) as a function of processor MTBF µind

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 109/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Simulations – Platform: Exascale with C = 1, 000

Stencil 2D Matrix product

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d
ay

s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

 350

3 4 5 7.5 10 15 20 35 50 75 100

M
ak

es
p
an

 (
d

ay
s)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical Plane
Hierarchical Plane BestPer

Hierarchical Line
Hierarchical Line BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
S

lim

 0

 50

 100

 150

 200

 250

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

 300

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

E
xa

sc
al

e-
F

at

 0

 50

 100

 150

 200

 250

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

 0

 50

 100

 150

 200

 250

1 2 3 4 5 7.5 10 15 20 35 50 75 100

M
a
k

e
s
p

a
n

 (
d

a
y

s
)

MTBF (years)

Coordinated
Coordinated BestPer

Hierarchical
Hierarchical BestPer

Hierarchical Port
Hierarchical Port BestPer

Makespan (in days) as a function of processor MTBF µind , C = 1, 000

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 110/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)
Young/Daly’s approximation
Exponential distributions
Assessing protocols at scale
In-memory checkpointing
Failure Prediction
Replication

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 111/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Motivation

Checkpoint transfer and storage
⇒ critical issues of rollback/recovery protocols

Stable storage: high cost

Distributed in-memory storage:

Store checkpoints in local memory ⇒ no centralized storage
, Much better scalability
Replicate checkpoints ⇒ application survives single failure
/ Still, risk of fatal failure in some (unlikely) scenarios

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 112/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Double checkpoint algorithm (Kale et al., UIUC)

1

1

d q s

f

f

P

Local checkpoint
done

Remote checkpoint
done

Period
done

Node p

Node p'

Platform nodes partitioned into pairs

Each node in a pair exchanges its checkpoint with its buddy

Each node saves two checkpoints:
- one locally: storing its own data
- one remotely: receiving and storing its buddy’s data

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 113/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Failures

1

1

d q s

f

f

P

Node p

Node p'

1

1

d q

f

f

tlost

Checkpoint of
p

Checkpoint of
p'

Risk Period

Node to replace p

q

f 1

tlostD R

After failure: downtime D and recovery from buddy node

Two checkpoint files lost, must be re-sent to faulty processor

Best trade-off between performance and risk?

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 114/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Failures

1

1

d q s

f

f

P

Node p

Node p'

1

1

d q

f

f

tlost

Checkpoint of
p

Checkpoint of
p'

Risk Period

Node to replace p

q

f 1

tlostD R

After failure: downtime D and recovery from buddy node

Two checkpoint files lost, must be re-sent to faulty processor

Application at risk until complete reception of both messages

Best trade-off between performance and risk?

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 114/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)
Young/Daly’s approximation
Exponential distributions
Assessing protocols at scale
In-memory checkpointing
Failure Prediction
Replication

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 115/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Framework

Predictor

Exact prediction dates (at least C seconds in advance)

Recall r : fraction of faults that are predicted

Precision p: fraction of fault predictions that are correct

Events

true positive: predicted faults

false positive: fault predictions that did not materialize as
actual faults

false negative: unpredicted faults

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 116/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Fault rates

µ: mean time between failures (MTBF)

µP mean time between predicted events (both true positive
and false positive)

µNP mean time between unpredicted faults (false negative).

µe : mean time between events (including three event types)

r =
TrueP

TrueP + FalseN
and p =

TrueP
TrueP + FalseP

(1− r)

µ
=

1

µNP
and

r

µ
=

p

µP

1

µe
=

1

µP
+

1

µNP

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 117/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Example

fault fault fault fault fault

pred. pred. pred. pred. pred. pred.

Time

F+P F+P
pred.

F+P
pred.

F+P
fault

t

Actual faults:

Predictor:

Overlap:

Predictor predicts six faults in time t

Five actual faults. One fault not predicted

µ = t
5 , µP = t

6 , and µNP = t

Recall r = 4
5 (green arrows over red arrows)

Precision p = 4
6 (green arrows over blue arrows)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 118/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Algorithm

1 While no fault prediction is available:
• checkpoints taken periodically with period T

2 When a fault is predicted at time t:
• take a checkpoint ALAP (completion right at time t)
• after the checkpoint, complete the execution of the period

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 119/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Computing the waste

1 Fault-free execution: Waste[FF] = C
T

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

2 Unpredicted faults: 1
µNP

[
D + R + T

2

]
TimeT -C T -C Tlost T -C

fault

C C C D R C

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 120/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Computing the waste

3 Predictions: 1
µP

[p(C + D + R) + (1− p)C]

TimeT -C Wreg

fault Predicted fault

T -Wreg -C T -C

C C Cp D R C C

with actual fault (true positive)

TimeT -C Wreg

Predicted fault

T -Wreg -C T -C T -C

C C Cp C C C

no actual fault (false negative)

Waste[fail] =
1

µ

[
(1− r)

T

2
+ D + R +

r

p
C

]
⇒ Topt ≈

√
2µC

1− r

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 120/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Refinements

Use different value Cp for proactive checkpoints

Avoid checkpointing too frequently for false negatives
⇒ Only trust predictions with some fixed probability q
⇒ Ignore predictions with probability 1− q
Conclusion: trust predictor always or never (q = 0 or q = 1)

Trust prediction depending upon position in current period
⇒ Increase q when progressing
⇒ Break-even point

Cp

p

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 121/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

With prediction windows

TimeTR-C TR-C Tlost TR-C

fault
(Regular mode)

Time

Regular mode Proactive mode

TR-C Wreg

I

TP-Cp TP-Cp TP-Cp TR-C
-Wreg

(Prediction without failure)

Time

Regular mode Proactive mode

TR-C Wreg

I

TP-Cp TP-Cp TR-C
-Wreg

fault
(Prediction with failure)

C C C D R C

C C Cp Cp Cp Cp C

C C Cp Cp Cp D R C

Gets too complicated! /

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 122/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)
Young/Daly’s approximation
Exponential distributions
Assessing protocols at scale
In-memory checkpointing
Failure Prediction
Replication

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 123/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Replication

Systematic replication: efficiency < 50%

Can replication+checkpointing be more efficient than
checkpointing alone?

Study by Ferreira et al. [SC’2011]: yes

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 124/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Model by Ferreira et al. [SC’ 2011]

Parallel application comprising N processes

Platform with ptotal = 2N processors

Each process replicated → N replica-groups

When a replica is hit by a failure, it is not restarted

Application fails when both replicas in one replica-group have
been hit by failures

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 125/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Example

p1

p2

p1

p2

p1

p2

p1

p2

Time

Pair1

Pair2

Pair3

Pair4

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 126/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

The birthday problem

Classical formulation
What is the probability, in a set of m people, that two of them
have same birthday ?

Relevant formulation
What is the average number of people required to find a pair with
same birthday?

Birthday(m) = 1 +
∫ +∞

0 e−x(1 + x/m)m−1dx = 2
3 +

√
πm
2 +

√
π

288m − 4
135m + . . .

The analogy

Two people with same birthday
≡

Two failures hitting same replica-group

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 127/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 128/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 128/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure: can failed PE be hit?

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 128/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure cannot hit failed PE

Failure uniformly distributed over 2N − 1 PEs
Probability that replica-group i is hit by failure: 1/(2N − 1)
Probability that replica-group 6= i is hit by failure: 2/(2N − 1)
Failure not uniformly distributed over replica-groups:
this is not the birthday problem

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 128/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure cannot hit failed PE

Failure uniformly distributed over 2N − 1 PEs
Probability that replica-group i is hit by failure: 1/(2N − 1)
Probability that replica-group 6= i is hit by failure: 2/(2N − 1)
Failure not uniformly distributed over replica-groups:
this is not the birthday problem

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 128/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure cannot hit failed PE

Failure uniformly distributed over 2N − 1 PEs
Probability that replica-group i is hit by failure: 1/(2N − 1)
Probability that replica-group 6= i is hit by failure: 2/(2N − 1)
Failure not uniformly distributed over replica-groups:
this is not the birthday problem

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 128/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure cannot hit failed PE

Failure uniformly distributed over 2N − 1 PEs
Probability that replica-group i is hit by failure: 1/(2N − 1)
Probability that replica-group 6= i is hit by failure: 2/(2N − 1)
Failure not uniformly distributed over replica-groups:
this is not the birthday problem

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 128/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure cannot hit failed PE

Failure uniformly distributed over 2N − 1 PEs
Probability that replica-group i is hit by failure: 1/(2N − 1)
Probability that replica-group 6= i is hit by failure: 2/(2N − 1)
Failure not uniformly distributed over replica-groups:
this is not the birthday problem

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 128/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure can hit failed PE

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 128/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure can hit failed PE

Suppose failure hits replica-group i
If failure hits failed PE: application survives
If failure hits running PE: application killed
Not all failures hitting the same replica-group are equal:
this is not the birthday problem

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 128/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure can hit failed PE

Suppose failure hits replica-group i
If failure hits failed PE: application survives
If failure hits running PE: application killed
Not all failures hitting the same replica-group are equal:
this is not the birthday problem

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 128/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Differences with birthday problem

1 2

. . .

i

. . .

N

2N processors but N processes, each replicated twice

Uniform distribution of failures

First failure: each replica-group has probability 1/N to be hit

Second failure can hit failed PE

Suppose failure hits replica-group i
If failure hits failed PE: application survives
If failure hits running PE: application killed
Not all failures hitting the same replica-group are equal:
this is not the birthday problem

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 128/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Correct analogy

� � � � . . . �
1 2 3 4 . . . n

⇑
• • • • • • • • • • • . . .

N = nrg bins, red and blue balls

Mean Number of Failures to Interruption (bring down application)
MNFTI = expected number of balls to throw

until one bin gets one ball of each color

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 129/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Number of failures to bring down application

MNFTI ah Count each failure hitting any of the initial
processors, including those already hit by a failure

MNFTI rp Count failures that hit running processors, and thus
effectively kill replicas.

MNFTI ah = 1 + MNFTI rp

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 130/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Number of failures to bring down application

MNFTI ah Count each failure hitting any of the initial
processors, including those already hit by a failure

MNFTI rp Count failures that hit running processors, and thus
effectively kill replicas.

MNFTI ah = 1 + MNFTI rp

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 130/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Exponential failures

Theorem MNFTI ah = E(NFTI ah|0) where

E(NFTI ah|nf) =

{
2 if nf = nrg ,

2nrg
2nrg−nf +

2nrg−2nf
2nrg−nf E

(
NFTI ah|nf + 1

)
otherwise.

E(NFTI ah|nf): expectation of number of failures to kill
application, knowing that
• application is still running
• failures have already hit nf different replica-groups

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 131/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Exponential failures (cont’d)

Proof

E
(

NFTI ah |nrg

)
=

1

2
× 1 +

1

2
×
(

1 + E
(

NFTI ah |nrg

))
.

E
(

NFTI ah|nf

)
=

2nrg − 2nf

2nrg
×
(

1 + E
(

NFTI ah|nf + 1
))

+
2nf

2nrg
×
(

1

2
× 1 +

1

2

(
1 + E

(
NFTI ah|nf

)))
.

MTTI = systemMTBF (2nrg)× MNFTI ah

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 132/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Exponential failures (cont’d)

Proof

E
(

NFTI ah |nrg

)
=

1

2
× 1 +

1

2
×
(

1 + E
(

NFTI ah |nrg

))
.

E
(

NFTI ah|nf

)
=

2nrg − 2nf

2nrg
×
(

1 + E
(

NFTI ah|nf + 1
))

+
2nf

2nrg
×
(

1

2
× 1 +

1

2

(
1 + E

(
NFTI ah|nf

)))
.

MTTI = systemMTBF (2nrg)× MNFTI ah

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 132/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Exponential failures (cont’d)

Proof

E
(

NFTI ah |nrg

)
=

1

2
× 1 +

1

2
×
(

1 + E
(

NFTI ah |nrg

))
.

E
(

NFTI ah|nf

)
=

2nrg − 2nf

2nrg
×
(

1 + E
(

NFTI ah|nf + 1
))

+
2nf

2nrg
×
(

1

2
× 1 +

1

2

(
1 + E

(
NFTI ah|nf

)))
.

MTTI = systemMTBF (2nrg)× MNFTI ah

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 132/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Comparison

2N processors, no replication

ThroughputStd = 2N(1−Waste) = 2N
(

1−
√

2C
µ2N

)
N replica-pairs

ThroughputRep = N
(

1−
√

2C
µrep

)
µrep = MNFTI × µ2N = MNFTI × µ

2N

Platform with 2N = 220 processors ⇒ MNFTI = 1284.4
µ = 10 years ⇒ better if C shorter than 6 minutes

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 133/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Failure distribution

221218 219216 217 220215

number of processors

0

50

100

150

200

av
er

ag
e

m
ak

es
pa

n
(i

n
da

ys
)

BestPeriod-g = 2
BestPeriod-g = 1
Daly-g = 2
Daly-g = 1

(a) Exponential

221218 219216 217 220215

number of processors

0

50

100

150

200

av
er

ag
e

m
ak

es
pa

n
(i

n
da

ys
)

BestPeriod-g = 2
BestPeriod-g = 1
Daly-g = 2
Daly-g = 1

(b) Weibull, k = 0.7

Crossover point for replication when µind = 125 years

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 134/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Weibull distribution with k = 0.7

Dashed line: Ferreira et al. Solid line: Correct analogy

101 100

Processor MTBF (in years)

0

200000

400000

600000

800000

1000000
N

um
b

er
of

pr
o

ce
ss

or
s

C = 300

C = 2400
C = 1200
C = 900
C = 600

C = 150

Study by Ferrreira et al. favors replication

Replication beneficial if small µ + large C + big ptotal

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 135/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)
Fault-Tolerant Middleware
Bags of tasks

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 136/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Fault Tolerance Software Stack

Application

Lib1 Lib2

Comm. Middleware (MPI)

OS

Network

Runtime
Helpers

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 137/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Fault Tolerance Software Stack

Application

Lib1 Lib2

Comm. Middleware (MPI)

OS

Network

Runtime
Helpers

Network
Transient
Failures

(inc. msg corruption)
Fault Tolerance

Automatic
Permanent

Crash
Fault Tolerance

Application-Based
Permanent

Crash
Fault Tolerance

Permanent
Crash

Detection

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 137/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Motivation

Motivation

Generality can prevent Efficiency

Specific solutions exploit more capability, have more
opportunity to extract efficiency

Naturally Fault Tolerant Applications

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 138/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)
Fault-Tolerant Middleware
Bags of tasks

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 139/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

HPC – MPI

HPC

Most popular middleware for multi-node programming in
HPC: Message Passing Interface (+Open MP +pthread +...)

Fault Tolerance in MPI:

[...] it is the job of the implementor of the MPI
subsystem to insulate the user from this unreliability,
or to reflect unrecoverable errors as failures.
Whenever possible, such failures will be reflected as
errors in the relevant communication call. Similarly,
MPI itself provides no mechanisms for handling
processor failures.

– MPI Standard 3.0, p. 20, l. 36:39

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 140/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

HPC – MPI

HPC

Most popular middleware for multi-node programming in
HPC: Message Passing Interface (+Open MP +pthread +...)

Fault Tolerance in MPI:
This document does not specify the state of a
computation after an erroneous MPI call has
occurred.

– MPI Standard 3.0, p. 21, l. 24:25

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 140/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

HPC – MPI

MPI Implementations

Open MPI (http://www.open-mpi.org)

On failure detection, the runtime system kills all processes
trunk: error is never reported to the MPI processes.
ft-branch: the error is reported, MPI might be partly usable.

MPICH (http://www.mcs.anl.gov/mpi/mpich/)

Default: on failure detection, the runtime kills all processes.
Can be de-activated by a runtime switch
Errors might be reported to MPI processes in that case. MPI
might be partly usable.

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 141/ 235

http://www.open-mpi.org
http://www.mcs.anl.gov/mpi/mpich/

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

FT Middleware in HPC

Not MPI. Sockets, PVM... CCI?
http://www.olcf.ornl.gov/center-projects/

common-communication-interface/ UCCS?

FT-MPI: http://icl.cs.utk.edu/harness/, 2003

MPI-Next-FT proposal (Open MPI, MPICH): ULFM

User-Level Failure Mitigation
http://fault-tolerance.org/ulfm/

Checkpoint on Failures: the rejuvenation in HPC

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 142/ 235

http://www.olcf.ornl.gov/center-projects/common-communication-interface/
http://www.olcf.ornl.gov/center-projects/common-communication-interface/
http://icl.cs.utk.edu/harness/
http://fault-tolerance.org/ulfm/

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

MPI-Next-FT proposal: ULFM

Goal

Resume Communication Capability for MPI (and nothing more)

Failure Reporting

Failure notification propagation / Distributed State
reconciliation

=⇒ In the past, these operations have often been merged
=⇒ this incurs high failure free overheads

ULFM splits these steps and gives control to the user

Recovery

Termination

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 143/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

MPI-Next-FT proposal: ULFM

Goal

Resume Communication Capability for MPI (and nothing more)

Error reporting indicates impossibility to carry an operation

State of MPI is unchanged for operations that can continue
(i.e. if they do not involve a dead process)

Errors are non uniformly returned

(Otherwise, synchronizing semantic is altered drastically with
high performance impact)

New APIs

REVOKE allows to resolve non-uniform error status

SHRINK allows to rebuild error-free communicators

AGREE allows to quit a communication pattern knowing it is
fully complete

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 144/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

MPI-Next-FT proposal: ULFM

Errors are visible only for operations that
cannot complete

Error Reporting

Operations that cannot complete return

ERR PROC FAILED, or ERR PENDING if
appropriate
State of MPI Objects is unchanged
(communicators etc.)
Repeating the same operation has the
same outcome

Operations that can be completed return
MPI SUCCESS

point to point operations between
non-failed ranks can continue

Errors are visible only for
operations that can’t complete
•  Operations that can’t complete return

ERR_PROC_FAILED
•  State of MPI objects unchanged

(communicators, etc)
•  Repeating the same operation has the same

outcome
•  Operations that can be completed

return MPI_SUCCESS
•  Pt-2-pt operations between non failed ranks

can continue

S(1)
PF

tim
e

R(2)
R(1)

R(2)

S(2)

S(3)

S
R(0)
S

PF

S(0)
S

S
S(2)

R(3)
S

S

S
S

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 145/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

MPI-Next-FT proposal: ULFM

Inconsistent Global State and Resolution

Error Reporting

Operations that can’t complete return

ERR PROC FAILED, or ERR PENDING if
appropriate

Operations that can be completed return
MPI SUCCESS

Local semantic is respected (buffer
content is defined), this does not
indicate success at other ranks.
New constructs
MPI Comm Revoke/MPI Comm shrink

are a base to resolve inconsistencies
introduced by failure

Incoherent global state and
resolution
•  Operations that can’t complete return

ERR_PROC_FAILED
•  Operations that can be completed

return MPI_SUCCESS
•  local semantic is respected (that is buffer

content is defined), it does not indicate
success at other ranks!

•  New constructs Comm_Revoke resolves
inconsistencies introduced by failures

Bcast
S S PF

Bcast
Revoke

R R

Shrink

Bcast
S S S

tim
e

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 146/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

MPI-Next-FT proposal: ULFM

Resilience Extensions for MPI: ULFM
ULFM provides targeted interfaces to empower recovery strategies with adequate options to restore
communication capabilities and global consistency, at the necessary levels only.

Sequoia AMG is an unstructured physics mesh application with a complex
communication pattern that employs both point-to-point and collective
operations. Its failure free performance is unchanged whether it is deployed
with ULFM or normal Open MPI.

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes
message test. The connectivity and bandwidth between rank 0 and rank 1
are unaffected by failure handling activities at rank 2.

CONTINUE ACROSS ERRORS

In ULFM, failures do not alter the state of MPI communicators.
Point-to-point operations can continue undisturbed between
non-faulty processes. ULFM imposes no recovery cost on simple
communication patterns that can proceed despite failures.

GROUP EXCEPTIONS

Consistent reporting of failures would add an unacceptable
performance penalty. In ULFM, errors are raised only at ranks where
an operation is disrupted; other ranks may still complete their
operations. A process can use MPI_[Comm,Win,File]_revoke to
propagate an error notification on the entire group, and could, for
example, interrupt other ranks to join a coordinated recovery.

COLLECTIVE OPERATIONS

Allowing collective operations to operate on damaged MPI objects
(Communicators, RMA windows or Files) would incur unacceptable
overhead. The MPI_Comm_shrink routine builds a replacement
communicator, excluding failed processes, which can be used to
resume collective communications, spawn replacement processes,
and rebuild RMA Windows and Files.

Master

W1

W2

Wn

Send (W1,T1)
Submit T1

Send (W2,T1)
Resubmit

Recv (ANY)
Detected W1

Recv(P1): failure
P2 calls RevokeP1

P2

P3

Pn

Recv(P1) Recv(P1): revoked

Recovery

P1

P2

P3

Pn

Bcast

Bcast

Shrink

Bcast

B
A

N
D

W
ID

T
H

 (
G

b
it

/s
)

MESSAGE SIZE (Bytes)

ULFM Fault Tolerant MPI Performance with failures
IMB Ping-pong between ranks 0 and 1 (IB20G)

Open MPI
FT Open MPI (w/failure at rank 3)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

L
A

T
E

N
C

Y
 (

u
s
)

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

1 4 16 64 256 1K

-1%

-0.5%

+0%

+0.5%

+1%

8 16 32 64 128 256 512

D
IF

F
E

R
E

N
C

E
 I
N

 R
U

N
N

IN
G

 T
IM

E

NUMBER OF PROCESSES

Sequoia AMG Performance with Fault Tolerance

N
o

n
-F

T
 i
s

 f
a

s
te

r
U

L
F

M
 i
s

 f
a

s
te

r

OPEN MPI ULFM IMPLEMENTATION PERFORMANCE

Resilience Extensions for MPI: ULFM
ULFM provides targeted interfaces to empower recovery strategies with adequate options to restore
communication capabilities and global consistency, at the necessary levels only.

Sequoia AMG is an unstructured physics mesh application with a complex
communication pattern that employs both point-to-point and collective
operations. Its failure free performance is unchanged whether it is deployed
with ULFM or normal Open MPI.

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes
message test. The connectivity and bandwidth between rank 0 and rank 1
are unaffected by failure handling activities at rank 2.

CONTINUE ACROSS ERRORS

In ULFM, failures do not alter the state of MPI communicators.
Point-to-point operations can continue undisturbed between
non-faulty processes. ULFM imposes no recovery cost on simple
communication patterns that can proceed despite failures.

GROUP EXCEPTIONS

Consistent reporting of failures would add an unacceptable
performance penalty. In ULFM, errors are raised only at ranks where
an operation is disrupted; other ranks may still complete their
operations. A process can use MPI_[Comm,Win,File]_revoke to
propagate an error notification on the entire group, and could, for
example, interrupt other ranks to join a coordinated recovery.

COLLECTIVE OPERATIONS

Allowing collective operations to operate on damaged MPI objects
(Communicators, RMA windows or Files) would incur unacceptable
overhead. The MPI_Comm_shrink routine builds a replacement
communicator, excluding failed processes, which can be used to
resume collective communications, spawn replacement processes,
and rebuild RMA Windows and Files.

Master

W1

W2

Wn

Send (W1,T1)
Submit T1

Send (W2,T1)
Resubmit

Recv (ANY)
Detected W1

Recv(P1): failure
P2 calls RevokeP1

P2

P3

Pn

Recv(P1) Recv(P1): revoked

Recovery

P1

P2

P3

Pn

Bcast

Bcast

Shrink

Bcast

B
A

N
D

W
ID

T
H

 (
G

b
it

/s
)

MESSAGE SIZE (Bytes)

ULFM Fault Tolerant MPI Performance with failures
IMB Ping-pong between ranks 0 and 1 (IB20G)

Open MPI
FT Open MPI (w/failure at rank 3)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

L
A

T
E

N
C

Y
 (

u
s
)

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

1 4 16 64 256 1K

-1%

-0.5%

+0%

+0.5%

+1%

8 16 32 64 128 256 512

D
IF

F
E

R
E

N
C

E
 I
N

 R
U

N
N

IN
G

 T
IM

E

NUMBER OF PROCESSES

Sequoia AMG Performance with Fault Tolerance

N
o

n
-F

T
 i
s
 f

a
s
te

r
U

L
F

M
 i
s
 f

a
s
te

r

OPEN MPI ULFM IMPLEMENTATION PERFORMANCE

Open MPI - ULFM support

Branch of Open MPI (www.open-mpi.org)

Maintained on bitbucket:
https://bitbucket.org/icldistcomp/ulfm

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 147/ 235

www.open-mpi.org
https://bitbucket.org/icldistcomp/ulfm

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)
Fault-Tolerant Middleware
Bags of tasks

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 148/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Master/Worker
Example: Master-worker

MPI_Irecv_init(comm, ANY_SOURCE, work_done)

While(more_work && workers) {
 submit_work(worker[i++ % workers])
 rc = MPI_Test(work_done)
 if(MPI_SUCCESS != RC)
 {
 MPI_COMM_FAILURE_ACK(comm)
 MPI_COMM_FAILURE_GET_ACKED(comm, i)
 worker[i] = worker[workers--]
 resubmit_work(worker[i], i)
 }
}

a
b

c

d

b

e

Master

Worker0
Worker1
Worker2

Worker

while(1) {

MPI_Recv(master, &work);

if(work == STOP_CMD)

break;

process_work(work, &result);

MPI_Send(master, result);

}

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 149/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Master/Worker

Master

for(i = 0; i < active_workers; i++) {

new_work = select_work();

MPI_Send(i, new_work);

}

while(active_workers > 0) {

MPI_Wait(MPI_ANY_SOURCE, &worker);

MPI_Recv(worker, &work);

work_completed(work);

if(work_tocomplete() == 0) break;

new_work = select_work();

if(new_work) MPI_Send(worker, new_work);

}

for(i = 0; i < active_workers; i++) {

MPI_Send(i, STOP_CMD);

}

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 150/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

FT Master

Fault Tolerant Master

/* Non-FT preamble */

for(i = 0; i < active_workers; i++) {

new_work = select_work();

rc = MPI_Send(i, new_work);

if(MPI_SUCCESS != rc) MPI_Abort(MPI_COMM_WORLD);

}

/* FT Section */

<...>

/* Non-FT epilogue */

for(i = 0; i < active_workers; i++) {

rc = MPI_Send(i, STOP_CMD);

if(MPI_SUCCESS != rc) MPI_Abort(MPI_COMM_WORLD);

}

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 151/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

FT Master

Fault Tolerant Master

while(active_workers > 0) { /* FT Section */

rc = MPI_Wait(MPI_ANY_SOURCE, &worker);

switch(rc) {

case MPI_SUCCESS: /* Received a result */

break;

case MPI_ERR_PENDING:

case MPI_ERR_PROC_FAILED: /* Worker died */

<...>

continue;

break;

default:

/* Unknown error, not related to failure */

MPI_Abort(MPI_COMM_WORLD);

}

<...>

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 152/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

FT Master

Fault Tolerant Master

case MPI_ERR_PENDING:

case MPI_ERR_PROC_FAILED:

/* A worker died */

MPI_Comm_failure_ack(comm);

MPI_Comm_failure_get_acked(comm, &group);

MPI_Group_difference(group, failed,

&newfailed);

MPI_Group_size(newfailed, &ns);

active_workers -= ns;

/* Iterate on newfailed to mark the work

* as not submitted */

failed = group;

continue;

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 153/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

FT Master

Fault Tolerant Master

rc = MPI_Recv(worker, &work);

switch(rc) {

/* Code similar to the MPI_Wait code */

<...>

}

work_completed(work);

if(work_tocomplete() == 0) break;

new_work = select_work();

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 154/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

FT Master

Fault Tolerant Master

if(new_work) {

rc = MPI_Send(worker, new_work);

switch(rc) {

/* Code similar to the MPI_Wait code */

/* Re-submit the work somewhere */

<...>

}

}

} /* End of while(active_workers > 0) */

MPI_Group_difference(comm, failed, &living);

/* Iterate on living */

for(i = 0; i < active_workers; i++) {

MPI_Send(rank_of(comm, living, i), STOP_CMD);

}

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 155/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Hands-on

Hands-On

Material to support this part of the tutorial includes code skeletons.

It is available online:
http://fault-tolerance.org/sc15

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 156/ 235

http://fault-tolerance.org/sc15

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)
The application
Using checkpoint and rollback recovery
In-memory checkpoint, spare-node & spawn
Lessons learned

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 157/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)
The application
Using checkpoint and rollback recovery
In-memory checkpoint, spare-node & spawn
Lessons learned

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 158/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Hands-on

Hands-On

Material to support this part of the tutorial includes code skeletons.

It is available online:
http://fault-tolerance.org/sc15

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 159/ 235

http://fault-tolerance.org/sc15

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)
The application
Using checkpoint and rollback recovery
In-memory checkpoint, spare-node & spawn
Lessons learned

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 160/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Hands-on

Hands-On

Material to support this part of the tutorial includes code skeletons.

It is available online:
http://fault-tolerance.org/sc15

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 161/ 235

http://fault-tolerance.org/sc15

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)
The application
Using checkpoint and rollback recovery
In-memory checkpoint, spare-node & spawn
Lessons learned

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 162/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Hands-on

Hands-On

Material to support this part of the tutorial includes code skeletons.

It is available online:
http://fault-tolerance.org/sc15

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 163/ 235

http://fault-tolerance.org/sc15

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)
The application
Using checkpoint and rollback recovery
In-memory checkpoint, spare-node & spawn
Lessons learned

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 164/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Hands-on

Hands-On

Material to support this part of the tutorial includes code skeletons.

It is available online:
http://fault-tolerance.org/sc15

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 165/ 235

http://fault-tolerance.org/sc15

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)
ABFT for Linear Algebra applications
Composite approach: ABFT & Checkpointing

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 166/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Forward-Recovery

Backward Recovery

Rollback / Backward Recovery: returns in the history to
recover from failures.

Spends time to re-execute computations

Rebuilds states already reached

Typical: checkpointing techniques

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 167/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Forward-Recovery

Forward Recovery

Forward Recovery: proceeds without returning.

Pays additional costs during (failure-free) computation to
maintain consistent redundancy

Or pays additional computations when failures happen

General technique: Replication

Application-Specific techniques: Iterative algorithms with
fixed point convergence, ABFT, ...

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 167/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)
ABFT for Linear Algebra applications
Composite approach: ABFT & Checkpointing

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 168/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Example: block LU/QR factorization

A A'

U

L

U

Solve A · x = b (hard)

Transform A into a LU factorization

Solve L · y = B · b, then U · x = y

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 169/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Example: block LU/QR factorization

A A'

U

L

U

GETF2: factorize a
column block

TRSM - Update row block

GEMM: Update
the trailing

matrix

Solve A · x = b (hard)

Transform A into a LU factorization

Solve L · y = B · b, then U · x = y

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 169/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Example: block LU/QR factorization

L

U U

L

U

GETF2: factorize a
column block

TRSM - Update row block

GEMM: Update
the trailing

matrix

L

U

Solve A · x = b (hard)

Transform A into a LU factorization

Solve L · y = B · b, then U · x = y

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 169/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Example: block LU/QR factorization

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2
1 3
0 2
1 3
0 2
1 3
0 2
1 3

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2
1 3
0 2
1 3
0 2
1 3
0 2
1 3

Failure of rank 2

2D Block Cyclic Distribution (here 2× 3)

A single failure ⇒ many data lost

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 169/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Algorithm Based Fault Tolerant QR decomposition

M

P
mb

nb
Q

N
< 2N/Q + nb

+
+
+

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

Checksum: invertible operation on the data of the row /
column

Checksum blocks are doubled, to allow recovery when data
and checksum are lost together

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 170/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Algorithm Based Fault Tolerant QR decomposition

M

P mb

nb
Q

N
N/Q

+
+
+

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

Checksum: invertible operation on the data of the row /
column

Checksum replication can be avoided by dedicating computing
resources to checksum storage

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 170/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Algorithm Based Fault Tolerant QR decomposition

M

P mb

nb
Q

N
N/Q

+
+
+

“Checkpoint”

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

B
A
B
A
B

Checkpoint the next set of Q-Panels to be able to return to it
in case of failures

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 170/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Algorithm Based Fault Tolerant QR decomposition

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

GETF2 GEMM

TRSM

Idea of ABFT: applying the operation on data and checksum
preserves the checksum properties

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 170/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Algorithm Based Fault Tolerant QR decomposition

+

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

For the part of the data that is not updated this way, the
checksum must be re-calculated

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 170/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Algorithm Based Fault Tolerant QR decomposition

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

GETF2 GEMM

TRSM

To avoid slowing down all processors and panel operation,
group checksum updates every Q block columns

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 170/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Algorithm Based Fault Tolerant QR decomposition

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

GETF2 GEMM

TRSM

To avoid slowing down all processors and panel operation,
group checksum updates every Q block columns

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 170/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Algorithm Based Fault Tolerant QR decomposition

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

GETF2 GEMM

TRSM

To avoid slowing down all processors and panel operation,
group checksum updates every Q block columns

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 170/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Algorithm Based Fault Tolerant QR decomposition

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

+

Then, update the missing coverage. Keep checkpoint block
column to cover failures during that time

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 170/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Algorithm Based Fault Tolerant QR decomposition

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

-
-
-

In case of failure, conclude the operation, then

Missing Data = Checksum - Sum(Existing Data) s

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 171/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Algorithm Based Fault Tolerant QR decomposition

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

+
+
+

In case of failure, conclude the operation, then

Missing Checksum = Sum(Existing Data)s

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 171/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Algorithm Based Fault Tolerant QR decomposition

M

P mb

nb
Q

N
N/Q

+
+
+

“Checkpoint”

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

B
A
B
A
B

Failures may happen while inside a Q−panel factorization

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 172/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Algorithm Based Fault Tolerant QR decomposition

M

P mb

nb
Q

N

-
-

-

-

“Checkpoint”

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

B
A
B
A
B

Valid Checksum Information allows to recover most of the
missing data, but not all: the checksum for the current
Q−panels are not valid{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 172/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Algorithm Based Fault Tolerant QR decomposition

M

P mb

nb
Q

N

“Checkpoint”

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

B
A
B
A
B

We use the checkpoint to restore the Q−panel in its initial
state

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 172/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Algorithm Based Fault Tolerant QR decomposition

M

P mb

nb
Q

N

“Checkpoint”

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

B
A
B
A
B

and re-execute that part of the factorization, without applying
outside of the scope

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 172/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

ABFT LU decomposition: implementation

MPI Implementation

PBLAS-based: need to provide “Fault-Aware” version of the
library

Cannot enter recovery state at any point in time: need to
complete ongoing operations despite failures

Recovery starts by defining the position of each process in the
factorization and bring them all in a consistent state
(checksum property holds)

Need to test the return code of each and every MPI-related
call

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 173/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

ABFT QR decomposition: performance0:22 A. Bouteiller, T. Herault, G. Bosilca, P. Du, and J. Dongarra

 0

 2

 4

 6

 8

 10

 12

6x6; 20k 12x12; 40k 24x24; 80k 48x48; 160k
 0

 10

 20

 30

 40

 50

 60

P
e
rf

o
rm

a
n

c
e
 (

T
F

lo
p

/s
)

R
e
la

ti
v
e
 O

v
e
rh

e
a
d

 (
%

)

#Processors (PxQ grid); Matrix size (N)

ScaLAPACK PDGEQRF
FT-PDGEQRF (no errors)
FT-PDGEQRF (one error)

Overhead: FT-PDGEQRF (no errors)
Overhead: FT-PDGEQRF (one error)

Fig. 11. Weak scalability of FT-QR: run time overhead on Kraken when failures strike

local snapshots have to be used along with re-factorization to recover the lost data and
restore the matrix state. This is referred to as the ”failure within Q panels.”

Figure 10 shows the overhead from these two cases for the LU factorization, along
with the no-error overhead as a reference. In the “border” case, the failure is simulated
to strike when the 96th panel (which is a multiple of grid columns, 6, 12, · · · , 48) has just
finished. In the “non-border” case, failure occurs during the (Q + 2)th panel factoriza-
tion. For example, when Q = 12, the failure is injected when the trailing update for the
step with panel (1301,1301) finishes. From the result in Figure 10, the recovery pro-
cedure in both cases adds a small overhead that also decreases when scaled to large
problem size and process grid. For largest setups, only 2-3 percent of the execution
time is spent recovering from a failure.

7.4. Extension to Other factorization
The algorithm proposed in this work can be applied to a wide range of dense matrix
factorizations other than LU. As a demonstration we have extended the fault toler-
ance functions to the ScaLAPACK QR factorization in double precision. Since QR uses
a block algorithm similar to LU (and also similar to Cholesky), the integration of fault
tolerance functions is mostly straightforward. Figure 11 shows the performance of QR
with and without recovery. The overhead drops as the problem and grid size increase,
although it remains higher than that of LU for the same problem size. This is expected:
as the QR algorithm has a higher complexity than LU (4

3N3 v.s. 2
3N3), the ABFT ap-

proach incurs more extra computation when updating checksums. Similar to the LU
result, recovery adds an extra 2% overhead. At size 160,000 a failure incurs about
5.7% penalty to be recovered. This overhead becomes lower, the larger the problem or
processor grid size considered.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: January 2013.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

MPI-Next ULFM Performance

Open MPI with ULFM; Kraken supercomputer;
{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 174/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

ABFT LU decomposition: performance

As supercomputers grow ever larger in scale, the Mean Time to Failure becomes shorter and shorter, making the complete and
successful execution of complex applications more and more difficult. FT-LA delivers a new approach, utilizing Algorithm-Based
Fault Tolerance (ABFT), to help factorization algorithms survive fail-stop failures. The FT-LA software package extends
ScaLAPACK with ABFT routines, and in sharp contrast with legacy checkpoint-based approaches, ABFT does not incur I/O overhead,
and promises a much more scalable protection scheme.

ABFT THE IDEA

Cost of ABFT comes only from
extra flops (to update checksums)
and extra storage

Cost decreases with machine
scale (divided by Q when using
PxQ processes)

PROTECTION

Matrix protected by block row checksum

The algorithm updates both the
trailing matrix AND the checksums

RECOVERY

Missing blocks reconstructed by inverting
the checksum operation

FUNCTIONALITY COVERAGE

Linear Systems of Equations

Least Squares

Cholesky, LU

QR (with protection of the upper and lower factors)

FEATURES

WORK IN PROGRESS

Covering four precisions: double complex, single complex, double real, single real (ZCDS)

Deploys on MPI FT draft (ULFM), or with “Checkpoint-on-failure”

Allows toleration of permanent crashes

Hessenber Reduction, Soft (silent) Errors

Process grid: p x q
F: simultaneous failures tolerated

Protection against 2 faults on
192x192 processes => 1% overhead

Usually F << q;
Overheads in F/q

Protection cost is inversely
proportional to machine scale!

Computation

Memory

Flops for the checksum update

Matrix is extended with
2F columns every q columns

FIND OUT MORE AT http://icl.cs.utk.edu/ft-la

 0

 7

 14

 21

 28

 35

6x6; 20k
12x12; 40k

24x24; 80k
48x48; 160k

96x96; 320k
192x192; 640k 0

 10

 20

 30

 40

 50

Re
la

tiv
e

Ov
er

he
ad

 (%
)

Pe
rfo

rm
an

ce
 (T

Fl
op

/s
)

#Processors (PxQ grid); Matrix size (N)

ScaLAPACK PDGETRF
FT-PDGETRF (no error)

FT-PDGETRF (w/1 recovery)
Overhead: FT-PDGETRF (no error)

Overhead: FT-PDGETRF (w/1 recovery)

U

L

C’

GETF2 GEMM

TRSM

A’

L

0 4 6 0 4 6

1 3 5 7 1 3 5 7

0 4 6 0 4 6

1 3 5 7 1 3 5 7

0 4 6 0 4 6

1 3 5 7 1 3 5 7

0 4 6 0 4 6

1 3 5 7 1 3 5 7

0 4 6 0 4 6

1 3 5 7 1 3 5 7

C

PERFORMANCE ON KRAKEN

MPI-Next ULFM Performance

Open MPI with ULFM; Kraken supercomputer;

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 175/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

ABFT LU decomposition: implementation

?

ABFT
Recovery

Checkpoint on Failure - MPI Implementation

FT-MPI / MPI-Next FT: not easily available on large
machines

Checkpoint on Failure = workaround

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 176/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

ABFT QR decomposition: performance

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

20k 40k 60k 80k 100k

P
e

rf
o

rm
a

n
c

e
 (

T
fl

o
p

s
/s

)

Matrix Size (N)

ScaLAPACK QR
CoF-QR (w/o failure)
CoF-QR (w/1 failure)

Fig. 2. ABFT QR and
one CoF recovery on
Kraken (Lustre).

 0

 100

 200

 300

 400

 500

 600

 700

 800

10k 20k 30k 40k 50k

P
e

rf
o

rm
a

n
c

e
 (

G
fl

o
p

s
/s

)

Matrix Size (N)

ScaLAPACK QR
CoF-QR (w/o failure)
CoF-QR (w/1 failure)

Fig. 3. ABFT QR and
one CoF recovery on
Dancer (local SSD).

 0

 1

 2

 3

 4

 5

 6

 7

20k 25k 30k 35k 40k 45k 50k

A
p

p
li

c
a

ti
o

n
 T

im
e

 S
h

a
re

 (
%

)

Matrix Size (N)

Load Checkpoint
Dump Checkpoint

ABFT Recovery

Fig. 4. Time breakdown
of one CoF recovery on
Dancer (local SSD).

5.3 Checkpoint-on-Failure QR Performance

Supercomputer Performance: Figure 2 presents the performance on the Kraken
supercomputer. The process grid is 24⇥24 and the block size is 100. The CoF-QR
(no failure) presents the performance of the CoF QR implementation, in a fault-
free execution; it is noteworthy, that when there are no failures, the performance
is exactly identical to the performance of the unmodified FT-QR implementa-
tion. The CoF-QR (with failure) curves present the performance when a failure
is injected after the first step of the PDLARFB kernel. The performance of the
non-fault tolerant ScaLAPACK QR is also presented for reference.

Without failures, the performance overhead compared to the regular ScaLA-
PACK is caused by the extra computation to maintain the checksums inherent
to the ABFT algorithm [12]; this extra computation is unchanged between CoF-
QR and FT-QR. Only on runs where a failure happened do the CoF protocols
undergoe the supplementary overhead of storing and reloading checkpoints. How-
ever, the performance of the CoF-QR remains very close to the no-failure case.
For instance, at matrix size N=100,000, CoF-QR still achieves 2.86 Tflop/s after
recovering from a failure, which is 90% of the performance of the non-fault toler-
ant ScaLAPACK QR. This demonstrates that the CoF protocol enables e�cient,
practical recovery schemes on supercomputers.

Impact of Local Checkpoint Storage: Figure 3 presents the performance of the
CoF-QR implementation on the Dancer cluster with a 8 ⇥ 16 process grid. Al-
though a smaller test platform, the Dancer cluster features local storage on nodes
and a variety of performance analysis tools unavailable on Kraken. As expected
(see [12]), the ABFT method has a higher relative cost on this smaller machine.
Compared to the Kraken platform, the relative cost of CoF failure recovery is
smaller on Dancer. The CoF protocol incurs disk accesses to store and load
checkpoints when a failure hits, hence the recovery overhead depends on I/O
performance. By breaking down the relative cost of each recovery step in CoF,
Figure 4 shows that checkpoint saving and loading only take a small percentage
of the total run-time, thanks to the availability of solid state disks on every node.
Since checkpoint reloading immediately follows checkpointing, the OS cache sat-
isfy most disk access, resulting in high I/O performance. For matrices larger than

Checkpoint on Failure - MPI Performance

Open MPI; Kraken supercomputer;

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 177/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)
ABFT for Linear Algebra applications
Composite approach: ABFT & Checkpointing

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 178/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Fault Tolerance Techniques

General Techniques

Replication

Rollback Recovery

Coordinated Checkpointing
Uncoordinated Checkpointing &
Message Logging
Hierarchical Checkpointing

Application-Specific Techniques

Algorithm Based Fault Tolerance
(ABFT)

Iterative Convergence

Approximated Computation

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 179/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Application

Typical Application

f o r (an insanenumber) {
/∗ E x t r a c t data from
∗ s i m u l a t i o n , f i l l up
∗ m a t r i x ∗/

sim2mat () ;

/∗ F a c t o r i z e matr ix ,
∗ S o l v e ∗/

d g e q r f () ;
d s o l v e () ;

/∗ Update s i m u l a t i o n
∗ w i t h r e s u l t v e c t o r ∗/

vec2s im () ;
}

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

LIBRARY Phase GENERAL Phase

Characteristics

, Large part of (total)
computation spent in
factorization/solve

Between LA operations:

/ use resulting vector / matrix
with operations that do not
preserve the checksums on
the data

/ modify data not covered by
ABFT algorithms

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 180/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Application

Typical Application

f o r (an insanenumber) {
/∗ E x t r a c t data from
∗ s i m u l a t i o n , f i l l up
∗ m a t r i x ∗/

sim2mat () ;

/∗ F a c t o r i z e matr ix ,
∗ S o l v e ∗/

d g e q r f () ;
d s o l v e () ;

/∗ Update s i m u l a t i o n
∗ w i t h r e s u l t v e c t o r ∗/

vec2s im () ;
}

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

LIBRARY Phase GENERAL Phase

Characteristics

, Large part of (total)
computation spent in
factorization/solve

Between LA operations:

/ use resulting vector / matrix
with operations that do not
preserve the checksums on
the data

/ modify data not covered by
ABFT algorithms

Goodbye ABFT?!

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 180/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Application

Typical Application

f o r (an insanenumber) {
/∗ E x t r a c t data from
∗ s i m u l a t i o n , f i l l up
∗ m a t r i x ∗/

sim2mat () ;

/∗ F a c t o r i z e matr ix ,
∗ S o l v e ∗/

d g e q r f () ;
d s o l v e () ;

/∗ Update s i m u l a t i o n
∗ w i t h r e s u l t v e c t o r ∗/

vec2s im () ;
}

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

LIBRARY Phase GENERAL Phase

Characteristics

, Large part of (total)
computation spent in
factorization/solve

Between LA operations:

/ use resulting vector / matrix
with operations that do not
preserve the checksums on
the data

/ modify data not covered by
ABFT algorithms

Problem Statement

How to use fault tolerant operations(∗) within a
non-fault tolerant(∗∗) application?(∗∗∗)

(*) ABFT, or other application-specific FT
(**) Or within an application that does not have the same kind of FT

(***) And keep the application globally fault tolerant...

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 180/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

ABFT&PeriodicCkpt

ABFT&PeriodicCkpt: no failure

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Periodic
Checkpoint

Split
Forced

Checkpoints

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 181/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

ABFT&PeriodicCkpt

ABFT&PeriodicCkpt: failure during Library phase

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Failure
(during LIBRARY)

Rollback
(partial)

Recovery

ABFT
Recovery

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 182/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

ABFT&PeriodicCkpt

ABFT&PeriodicCkpt: failure during General phase

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Failure
(during GENERAL)

Rollback
(fulll)

Recovery

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 183/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

ABFT&PeriodicCkpt: Optimizations

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

ABFT&P
ERIO

DICC
KPT

ABFT&PeriodicCkpt: Optimizations

If the duration of the General phase is too small: don’t add
checkpoints

If the duration of the Library phase is too small: don’t do
ABFT recovery, remain in General mode

this assumes a performance model for the library call

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 184/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

ABFT&PeriodicCkpt: Optimizations

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

ABFT&P
ERIO

DICC
KPT

GENERAL
Checkpoint Interval

ABFT&PeriodicCkpt: Optimizations

If the duration of the General phase is too small: don’t add
checkpoints

If the duration of the Library phase is too small: don’t do
ABFT recovery, remain in General mode

this assumes a performance model for the library call

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 184/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

A few notations

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

T0

TG TL

PG

Times, Periods

T0: Duration of an Epoch (without FT)
TL = αT0: Time spent in the Library phase
TG = (1− α)T0: Time spent in the General phase
PG : Periodic Checkpointing Period
T ff,T ff

G ,T
ff
L : “Fault Free” times

t lost
G , t lost

L : Lost time (recovery overhreads)
T final
G ,T final

L : Total times (with faults)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 185/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

A few notations

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

C CLCL

Costs

CL = ρC : time to take a checkpoint of the Library data set
CL̄ = (1− ρ)C : time to take a checkpoint of the General data
set
R,RL̄: time to load a full / General data set checkpoint
D: down time (time to allocate a new machine / reboot)
ReconsABFT: time to apply the ABFT recovery
φ: Slowdown factor on the Library phase, when applying ABFT

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 185/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

General phase, fault free waste

General phase

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Periodic
Checkpoint

Split
Forced

Checkpoints

Without Failures

T ff
G =

{
TG + CL̄ if TG < PG
TG

PG−C × PG if TG ≥ PG

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 186/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Library phase, fault free waste

Library phase

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Periodic
Checkpoint

Split
Forced

Checkpoints

Without Failures

T ff
L = φ× TL + CL

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 187/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

General phase, failure overhead

General phase

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Failure
(during GENERAL)

Rollback
(fulll)

Recovery

Failure Overhead

t lost
G =

{
D + R +

Tff
G

2 if TG < PG

D + R + PG
2 if TG ≥ PG

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 188/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Library phase, failure overhead

Library phase

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Failure
(during LIBRARY)

Rollback
(partial)

Recovery

ABFT
Recovery

Failure Overhead

t lost
L = D + RL̄ + ReconsABFT

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 189/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Overall

Overall

Time (with overheads) of Library phase is constant (in PG):

T final
L =

1

1− D+RL̄+ReconsABFT

µ

× (α× TL + CL)

Time (with overehads) of General phase accepts two cases:

T final
G =

1

1−D+R+
TG +C

L̄
2

µ

× (TG + CL) if TG < PG

TG

(1− C
PG

)(1−D+R+
PG

2
µ

)

if TG ≥ PG

Which is minimal in the second case, if

PG =
√

2C (µ− D − R)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 190/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Waste

From the previous, we derive the waste, which is obtained by

Waste = 1− T0

T final
G + T final

L

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 191/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Toward Exascale, and Beyond!

Let’s think at scale

Number of components ↗⇒ MTBF ↘
Number of components ↗⇒ Problem Size ↗
Problem Size ↗⇒

Computation Time spent in Library phase ↗

, ABFT&PeriodicCkpt should perform better with scale

ĳ/ By how much?

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 192/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Competitors

FT algorithms compared

PeriodicCkpt Basic periodic checkpointing

Bi-PeriodicCkpt Applies incremental checkpointing techniques to
save only the library data during the library phase.

ABFT&PeriodicCkpt The algorithm described above

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 193/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Weak Scale #1

Weak Scale Scenario #1

Number of components, n, increase

Memory per component remains constant

Problem Size increases in O(
√

n) (e.g. matrix operation)

µ at n = 105: 1 day, is in O(1
n)

C (=R) at n = 105, is 1 minute, is in O(n)

α is constant at 0.8, as is ρ.

(both Library and General phase increase in time at the
same speed)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 194/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Weak Scale #1

 0

 10

 20

 30

 40

#
 F

a
u

lt
s Nb Faults PeriodicCkpt

Nb Faults Bi-PeriodicCkpt
Nb Faults ABFT PeriodicCkpt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1k 10k 100k 1M

W
a

s
te

Nodes

PeriodicCkpt
Bi-PeriodicCkpt

ABFT PeriodicCkpt

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 195/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Weak Scale #2

Weak Scale Scenario #2

Number of components, n, increase

Memory per component remains constant

Problem Size increases in O(
√

n) (e.g. matrix operation)

µ at n = 105: 1 day, is O(1
n)

C (=R) at n = 105, is 1 minute, is in O(n)

ρ remains constant at 0.8, but Library phase is O(n3) when
General phases progresses in O(n2) (α is 0.8 at n = 105

nodes).

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 196/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Weak Scale #2

 0

 10

 20

 30

 40

#
 F

a
u
lt
s Nb Faults PeriodicCkpt

Nb Faults Bi-PeriodicCkpt
Nb Faults ABFT PeriodicCkpt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1k 10k 100k 1M
0.00

0.12

0.25

0.38

0.50

0.62

0.75

0.88

1.00

W
a
s
te

R
a
ti
o
 o

f
ti
m

e
 s

p
e
n
t
in

 t
h
e
 A

B
F

T
 r

o
u
ti
n
e

Nodes

PeriodicCkpt
Bi-PeriodicCkpt

ABFT PeriodicCkpt
ABFT Ratio

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 197/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Weak Scale #3

Weak Scale Scenario #3

Number of components, n, increase

Memory per component remains constant

Problem Size increases in O(
√

n) (e.g. matrix operation)

µ at n = 105: 1 day, is O(1
n)

C (=R) at n = 105, is 1 minute, stays independent of n
(O(1))

ρ remains constant at 0.8, but Library phase is O(n3) when
General phases progresses in O(n2) (α is 0.8 at n = 105

nodes).

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 198/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Weak Scale #3

 0

 2

 4

 6

#
 F

a
u

lts

Nb Faults PeriodicCkpt
Nb Faults Bi-PeriodicCkpt

Nb Faults ABFT PeriodicCkpt

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1k
α = 0.55

10k
α = 0.8

100k
α = 0.92

1M
α = 0.975

W
a

st
e

Nodes

PeriodicCkpt
Bi-PeriodicCkpt

ABFT PeriodicCkpt

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 199/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)
Coupling checkpointing and verification
Application-specific methods

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 200/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Definitions

Instantaneous error detection ⇒ fail-stop failures,
e.g. resource crash

Silent errors (data corruption) ⇒ detection latency

Silent error detected only when the corrupt data is activated

Includes some software faults, some hardware errors (soft
errors in L1 cache), double bit flip

Cannot always be corrected by ECC memory

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 201/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Quotes

Soft Error: An unintended change in the state of an electronic
device that alters the information that it stores without
destroying its functionality, e.g. a bit flip caused by a
cosmic-ray-induced neutron. (Hengartner et al., 2008)

SDC occurs when incorrect data is delivered by a computing
system to the user without any error being logged (Cristian
Constantinescu, AMD)

Silent errors are the black swan of errors (Marc Snir)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 202/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Should we be afraid? (courtesy Al Geist)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 203/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Probability distributions for silent errors

?
Theorem: µp =

µind

p
for arbitrary distributions

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 204/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Probability distributions for silent errors

?
Theorem: µp =

µind

p
for arbitrary distributions

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 204/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)
Coupling checkpointing and verification
Application-specific methods

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 205/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

General-purpose approach

TimeXe Xd

fault Detection

Error and detection latency

Last checkpoint may have saved an already corrupted state

Saving k checkpoints (Lu, Zheng and Chien):

¬ Critical failure when all live checkpoints are invalid
 Which checkpoint to roll back to?

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 206/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

General-purpose approach

TimeXe Xd

fault Detection

Error and detection latency

Last checkpoint may have saved an already corrupted state

Saving k checkpoints (Lu, Zheng and Chien):

¬ Critical failure when all live checkpoints are invalid
Assume unlimited storage resources

 Which checkpoint to roll back to?
Assume verification mechanism

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 206/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Optimal period?

TimeXe Xd

fault Detection

Error and detection latency

Xe inter arrival time between errors; mean time µe

Xd error detection time; mean time µd

Assume Xd and Xe independent

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 207/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Arbitrary distribution

Wasteff =
C

T

Wastefail =
T
2 + R + µd

µe

Only valid if T
2 + R + µd � µe

Theorem

Best period is Topt ≈
√

2µeC

Independent of Xd

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 208/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Exponential distribution

Theorem

At the end of the day,

E(T (w)) = eλeR (µe + µd) (eλe(w+C) − 1)

Optimal period independent of µd

Good approximation is T =
√

2µeC (Young’s formula)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 209/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

The case with limited resources

Assume that we can only save the last k checkpoints

Definition (Critical failure)

Error detected when all checkpoints contain corrupted data.
Happens with probability Prisk during whole execution.

Prisk decreases when T increases (when Xd is fixed).
Hence, Prisk ≤ ε leads to a lower bound Tmin on T

Can derive an analytical form for Prisk when Xd follows an
Exponential law. Use it as a good(?) approximation for arbitrary
laws

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 210/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Limitation of the model

It is not clear how to detect when the error has occurred
(hence to identify the last valid checkpoint) / / /

Need a verification mechanism to check the correctness of the
checkpoints. This has an additional cost!

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 211/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Coupling checkpointing and verification

Verification mechanism of cost V

Silent errors detected only when verification is executed

Approach agnostic of the nature of verification mechanism
(checksum, error correcting code, coherence tests, etc)

Fully general-purpose
(application-specific information, if available, can always be
used to decrease V)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 212/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

On-line ABFT scheme for PCG

Zizhong Chen, PPoPP’13

Iterate PCG
Cost: SpMV, preconditioner
solve, 5 linear kernels

Detect soft errors by checking
orthogonality and residual

Verification every d iterations
Cost: scalar product+SpMV

Checkpoint every c iterations
Cost: three vectors, or two
vectors + SpMV at recovery

Experimental method to
choose c and d

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 213/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Base pattern (and revisiting Young/Daly)

TimeW W

fault
Detection

V C V C V C

Fail-stop (classical) Silent errors

Pattern T = W + C S = W + V + C

Waste[FF] C
T

V+C
S

Waste[fail] 1
µ(D + R + W

2) 1
µ(R + W + V)

Optimal Topt =
√

2Cµ Sopt =
√

(C + V)µ

Waste[opt]
√

2C
µ 2

√
C+V
µ

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 214/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

With p = 1 checkpoint and q = 3 verifications

Timew w w w w w

fault
Detection

V C V V V C V V V C

Base Pattern p = 1, q = 1 Waste[opt] = 2
√

C+V
µ

New Pattern p = 1, q = 3 Waste[opt] = 2
√

4(C+3V)
6µ

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 215/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

BalancedAlgorithm

Time2w 2w w w 2w 2w

V C V V C V V V C

p checkpoints and q verifications, p ≤ q

p = 2, q = 5, S = 2C + 5V + W

W = 10w , six chunks of size w or 2w

May store invalid checkpoint (error during third chunk)

After successful verification in fourth chunk, preceding
checkpoint is valid

Keep only two checkpoints in memory and avoid any fatal
failure

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 216/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

BalancedAlgorithm

Time2w 2w w w 2w 2w

V C V V C V V V C

¬ (proba 2w/W) Tlost = R + 2w + V

 (proba 2w/W) Tlost = R + 4w + 2V

® (proba w/W) Tlost = 2R + 6w + C + 4V

¯ (proba w/W) Tlost = R + w + 2V

° (proba 2w/W) Tlost = R + 3w + 2V

± (proba 2w/W) Tlost = R + 5w + 3V

Waste[opt] ≈ 2

√
7(2C + 5V)

20µ

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 217/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Analysis

Key parameters

off failure-free overhead per pattern

fre fraction of work that is re-executed

Wasteff = off
S , where off = pC + qV and S = off + pqw � µ

Wastefail = Tlost
µ , where Tlost = freS + β

β: constant, linear combination of C , V and R

Waste ≈ off
S + freS

µ ⇒ Sopt ≈
√

off
fre
· µ

Waste[opt] = 2

√
offfre

µ
+ o(

√
1

µ
)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 218/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Computing fre when p = 1

Timeα1W α2W α3W

V C V V V C

Theorem

The minimal value of fre(1, q) is obtained for same-size chunks

fre(1, q) =
∑q

i=1

(
αi
∑i

j=1 αj

)
Minimal when αi = 1/q

In that case, fre(1, q) = q+1
2q

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 219/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Computing fre when p ≥ 1

Timeα1W α2W α3W

V C C C V C

Theorem

fre(p, q) ≥ p+q
2pq , bound is matched by BalancedAlgorithm.

Assess gain due to the p − 1 intermediate checkpoints

f
(1)

re − f
(p)

re =
∑p

i=1

(
αi
∑i−1

j=1 αj

)
Maximal when αi = 1/p for all i

In that case, f
(1)

re − f
(p)

re = (p − 1)/p2

Now best with equipartition of verifications too

In that case, f
(1)

re = q+1
2q and f

(p)
re = q+1

2q −
p−1
2p = q+p

2pq

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 220/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Choosing optimal pattern

Let V = γC , where 0 < γ ≤ 1

offfre = p+q
2pq (pC + qV) = C × p+q

2

(
1
q + γ

p

)
Given γ, minimize p+q

2

(
1
q + γ

p

)
with 1 ≤ p ≤ q, and p, q

taking integer values

Let p = λ× q. Then λopt =
√
γ =

√
V
C

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 221/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Summary

Time2w 2w w w 2w 2w

V C V V C V V V C

BalancedAlgorithm optimal when C ,R,V � µ

Keep only 2 checkpoints in memory/storage

Closed-form formula for Waste[opt]

Given C and V , choose optimal pattern

Gain of up to 20% over base pattern

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 222/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)
Coupling checkpointing and verification
Application-specific methods

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 223/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Literature

ABFT: dense matrices / fail-stop, extended to sparse / silent.
Limited to one error detection and/or correction in practice

Asynchronous (chaotic) iterative methods (old work)

Partial differential equations: use lower-order scheme as
verification mechanism (detection only, Benson, Schmit and
Schreiber)

FT-GMRES: inner-outer iterations (Hoemmen and Heroux)

PCG: orthogonalization check every k iterations,
re-orthogonalization if problem detected (Sao and Vuduc)

. . . Many others

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 224/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Dynamic programming for linear chains of tasks

{T1,T2, . . . ,Tn} : linear chain of n tasks

Each task Ti fully parametrized:

wi computational weight
Ci ,Ri ,Vi : checkpoint, recovery, verification

Error rates:

λF rate of fail-stop errors
λS rate of silent errors

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 225/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

VC-only

1 i j

TimerecC (i , k − 1) TC (i + 1, j)

VC VC

min
0≤k<n

TimerecC (n, k)

TimerecC (j , k) = min
k≤i<j

{TimerecC (i , k − 1) + T SF
C (i + 1, j)}

T SF
C (i , j) = pF

i ,j

(
Tlost i,j + Ri−1 + T SF

C (i , j)
)

+
(

1− pF
i ,j

)(∑j
`=i w` + Vj + pS

i ,j

(
Ri−1 + T SF

C (i , j)
)

+
(

1− pS
i ,j

)
Cj

)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 226/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Young/Daly

TimeFF = TimeFinal (1−WasteFail) TimeFinal ×WasteFail

TimeFinal

T − VC VC T − VC VC T − VC VC T − VC VC T − VC VC

T − VC VC T − VC VC T − VC VC T − VC VC T − VC VC

Waste = Wasteef + Wastefail

Waste =
V + C

T
+ λF (s)(R +

T

2
) + λS(s)(R + T)

Topt =

√
2(V + C)

λF (s) + 2λS(s)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 227/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Extensions

VC-only and VC+V

Different speeds with DVFS, different error rates

Different execution modes

Optimize for time or for energy consumption

Current research

Use verification to correct some errors (ABFT)

Same analysis (smaller error rate but higher verification cost)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 228/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

A few questions

Silent errors

Error rate? MTBE?

Selective reliability?

New algorithms beyond iterative? matrix-product, FFT, ...

Multi-level patterns for both fail-stop and silent errors

Resilient research on resilience

Models needed to assess techniques at scale
without bias ,

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 229/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

A few questions

Silent errors

Error rate? MTBE?

Selective reliability?

New algorithms beyond iterative? matrix-product, FFT, ...

Multi-level patterns for both fail-stop and silent errors

Resilient research on resilience

Models needed to assess techniques at scale
without bias ,

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 229/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

A few questions

Silent errors

Error rate? MTBE?

Selective reliability?

New algorithms beyond iterative? matrix-product, FFT, ...

Multi-level patterns for both fail-stop and silent errors

Resilient research on resilience

Models needed to assess techniques at scale
without bias ,

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 229/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

A few questions

Silent errors

Error rate? MTBE?

Selective reliability?

New algorithms beyond iterative? matrix-product, FFT, ...

Multi-level patterns for both fail-stop and silent errors

Resilient research on resilience

Models needed to assess techniques at scale
without bias ,

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 229/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Outline

1 Introduction (15mn)

2 Checkpointing: Protocols (30mn)

3 Checkpointing: Probabilistic models (45mn)

4 Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)

5 Hands-on: Designing a Resilient Application (90 mn)

6 Forward-recovery techniques (40mn)

7 Silent errors (35mn)

8 Conclusion (15mn)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 230/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Conclusion

Multiple approaches to Fault Tolerance

Application-Specific Fault Tolerance will always provide more
benefits:

Checkpoint Size Reduction (when needed)
Portability (can run on different hardware, different
deployment, etc..)
Diversity of use (can be used to restart the execution and
change parameters in the middle)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 231/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Conclusion

Multiple approaches to Fault Tolerance

General Purpose Fault Tolerance is a required feature of the
platforms

Not every computer scientist needs to learn how to write
fault-tolerant applications
Not all parallel applications can be ported to a fault-tolerant
version

Faults are a feature of the platform. Why should it be the role
of the programmers to handle them?

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 231/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Conclusion

Application-Specific Fault Tolerance

Fault Tolerance is introducing redundancy in the application

replication of computation
maintaining invariant in the data

Requirements of a more Fault-friendly programming
environment

MPI-Next evolution
Other programming environments?

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 232/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Conclusion

General Purpose Fault Tolerance

Software/hardware techniques to reduce checkpoint, recovery,
migration times and to improve failure prediction

Multi-criteria scheduling problem
execution time/energy/reliability
add replication
best resource usage (performance trade-offs)

Need combine all these approaches!

Several challenging algorithmic/scheduling problems ,

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 233/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Bibliography

Exascale
• Toward Exascale Resilience, Cappello F. et al., IJHPCA 23, 4 (2009)
• The International Exascale Software Roadmap, Dongarra, J., Beckman, P. et al.,
IJHPCA 25, 1 (2011)

ABFT Algorithm-based fault tolerance applied to high performance computing,
Bosilca G. et al., JPDC 69, 4 (2009)

Coordinated Checkpointing Distributed snapshots: determining global states of
distributed systems, Chandy K.M., Lamport L., ACM Trans. Comput. Syst. 3, 1
(1985)

Message Logging A survey of rollback-recovery protocols in message-passing systems,
Elnozahy E.N. et al., ACM Comput. Surveys 34, 3 (2002)

Replication Evaluating the viability of process replication reliability for exascale
systems, Ferreira K. et al, SC’2011

Models
• Checkpointing strategies for parallel jobs, Bougeret M. et al., SC’2011

• Unified model for assessing checkpointing protocols at extreme-scale, Bosilca G et

al., CCPE 26(17), pp 2772-2791 (2014)

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 234/ 235

Intro Protocols Models Hands-on Forward-recovery Silent Errors Conclusion

Bibliography

New Monograph, Springer Verlag 2015

{bosilca,bouteiller,herault}@icl.utk.edu | yves.robert@inria.fr Fault-tolerance for HPC 235/ 235

	Introduction (15mn)
	Large-scale computing platforms
	Faults and failures

	Checkpointing: Protocols (30mn)
	Process Checkpointing
	Coordinated Checkpointing
	Application-Level Checkpointing
	Hierarchical checkpointing

	Checkpointing: Probabilistic models (45mn)
	Young/Daly's approximation
	Exponential distributions
	Assessing protocols at scale
	In-memory checkpointing
	Failure Prediction
	Replication

	Hands-on: First Implementation – Fault-Tolerant MPI (90 mn)
	Fault-Tolerant Middleware
	Bags of tasks
	The application
	Using checkpoint and rollback recovery
	In-memory checkpoint, spare-node & spawn
	Lessons learned

	Forward-recovery techniques (40mn)
	ABFT for Linear Algebra applications
	Composite approach: ABFT & Checkpointing

	Silent errors (35mn)
	Coupling checkpointing and verification
	Application-specific methods

	Conclusion (15mn)

