Try the Docker packaged ULFM fault tolerant MPI

To support the SC’16 Tutorial, we have designed a self contained Docker image. This packaged docker image contains everything you need to compile, and run the tutorial examples, in a contained sandbox. Docker can be seen as a lightweight virtual machine, running its own copy of an operating system, but without the heavy requirement of a full-blown hypervisor. We use this technology to package a very small Linux distribution containing gcc, mpicc, and mpirun, as needed to compile and run natively your fault tolerant MPI examples on your host Linux, Mac or Windows desktop, without the effort of compiling a production version of ULFM Open MPI on your own.

Content:

1. A Docker Image with a precompiled version of ULFM Open MPI 1.1.
2. The tutorial hands-on example.
3. Various tests and benchmarks for resilient operations.
4. The sources for the ULFM Open MPI branch release 1.1.

Using the Docker Image

1. Install Docker
You can install Docker quickly, either by downloading one of the official builds from http://docker.io for MacOS and Windows, or by installing Docker from your Linux or MAcOS package manager (i.e. yum install docker, apt-get docker-io, brew/port install docker-io). Please refer to the Docker installation instructions for your system.
2. In a terminal, verify that the docker installation works by running

3. Unpack the package:

3. Load the pre-compiled ULFM Docker machine into your Docker installation:

4. Source the docker aliases, which will redirect the “make” and “mpirun” command in this terminal’s local shell to execute the provided commands from the Docker machine.

5. Go to the tutorial examples directory. You can now type make to compile the examples using the Docker provided “mpicc”, and you can execute the generated examples in the Docker machine using mpirun -am ft-enable-mpi -np 10 example. Note the special -am ft-enable-mpi parameter; if this parameter is omitted, the non-fault tolerant version of Open MPI is launched and applications containing failures will automatically abort.

Have fun!

ULFM-1.1 Release

ULFM has reached the 1.1 milestone, a minor release, crushing few bugs identified by our users and developers.

Focus has been toward improving stability, feature coverage for intercommunicators, and following the updated specification for MPI_ERR_PROC_FAILED_PENDING.

  • Addition of the MPI_ERR_PROC_FAILED_PENDING error code, as per newer specification revision. Properly returned from point-to-point, non-blocking ANY_SOURCE operations.
  • Alias MPI_ERR_PROC_FAILED, MPI_ERR_PROC_FAILED_PENDING and MPI_ERR_REVOKED to the corresponding standard blessed – extension- names MPIX_ERR_xxx.
  • Support for Intercommunicators:
    • Support for the blocking version of the agreement, MPI_COMM_AGREE on Intercommunicators.
    • MPI_COMM_REVOKE tested on intercommunicators.
  • Disabled completely (.ompi_ignore) many untested components
  • Changed the default ORTE failure notification propagation aggregation delay from 1s to 25ms.
  • Added an OMPI internal failure propagator; failure propagation between SM domains is now immediate.
  • Bugfixes:
    • SendRecv would not always report MPI_ERR_PROC_FAILED correctly.
    • SendRecv could incorrectly update the status with errors pertaining to the Send portion of the Sendrecv.
  • Revoked send operations are now always completed or remote cancelled and may not deadlock anymore.
  • Cancelled send operations to a dead peer will not trigger an assert when the BTL reports that same failure.
  • Repeat calls to operations returning MPI_ERR_PROC_FAILED will eventually return MPI_ERR_REVOKED when another process revokes the communicator.

Get the source and happy hacking,
The ULFM team

ULFM 1.0 Announced

The major 1.0 milestone has been reached for the User Level Failure Mitigation compliant fault tolerant MPI.

We have focused on improving performance, both before and after the occurence of failures. The list of new features includes:

  • Support for the non-blocking version of the agreement, MPI_COMM_IAGREE.
  • Compliance with the latest ULFM specification draft. In particular, the MPI_COMM_(I)AGREE semantic has changed.
  • New algorithm to perform agreements, with a truly logarithmic complexity in number of ranks, which translates into huge performance boosts in MPI_COMM_(I)AGREE and MPI_COMM_SHRINK. Meet us at SC’15 to  learn more about the novel algorithm we designed!
  • New algorithm to perform communicator revocation. MPI_COMM_REVOKE performs a reliable broadcast with a fixed maximum output degree, which scales logarithmically with the number of ranks. Meet us at EuroMPI’15 to learn more about the Revoke algorithm we designed!
  • Improved support for our traditional network layer:
    • TCP: fully tested
    • SM: fully tested (with the exception of XPMEM, which remains unsupported)
  • Added support for High Performance networks
    • Open IB: reasonably tested
    • uGNI: reasonably tested
  • The tuned collective module is now enabled by default (reasonably tested), expect a huge performance boost compared to the former basic default setting
  • Back-ported PBS/ALPS fixes from Open MPI
  • Back-ported OpenIB bug/performance fixes from Open MPI
  • Improve Context ID allocation algorithm to reduce overheads of Shrink
  • Miscellaneous bug fixes (look at the commit log for the full list).

Fault tolerance support for RMA and IO is still under development.

Get the source and happy hacking,
The ULFM team