
Introduction Early Returning Agreement Performance Evaluation Conclusion

Practical Scalable Consensus for
Pseudo-Synchronous Distributed Systems

Thomas Herault1, Aurélien Bouteiller1, George Bosilca1,
Marc Gamell2, Keita Teranishi3,

Manish Parashar2, Jack Dongarra1,4

1 – University of Tennessee Knoxville
2 – Rutgers University

3 – Sandia National Laboratories
4 – Oak Ridge National Laboratories, Manchester University

Practical Scalable Consensus

Practical Scalable Consensus 1/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Outline

1 Introduction
Motivation and Context
Formal Framework

2 Early Returning Agreement

3 Performance Evaluation

4 Conclusion

Practical Scalable Consensus 2/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Consensus

[consensus] is fundamental to distributed computing
unreliable environments: it consists in agreeing on a
piece of data upon which the computation depends

M.Fischer, Brief Survey on Consensus

D.Davies, J.F.Wakerly“Synchronization and Matching in
Redundant Systems”, IEEE Trans. on Comp., 1978. Context:
Triple Modular Redundancy. Conclusion: Agreement through
voting can tolerate only a minority of faulty processors.

Consensus is ubiquitous in distributed systems with
high-availability (e.g. distributed database). It is a critical
component in Fault-Tolerant HPC systems.

Practical Scalable Consensus 3/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Consensus in the context of HPC

Consider the case of a broadcast implemented with a binary tree.

�

�

× × � �

Failures, that happen during the execution, introduce
inconsistencies: not all processes know that the broadcast
operation failed.

Consensus (or agreement) allows to reconcile inconsistent /
non-uniform states due to failures.

It must be reliable.
It must be efficient, especially in the failure-free case.

Practical Scalable Consensus 4/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

ULFM
RESILIENCE EXTENSIONS FOR MPI: ULFM

ULFM provides targeted interfaces to empower recovery strategies with adequate options to restore
communication capabilities and global consistency, at the necessary levels only.

Taking into account user’s feedback, the ULFM implementation has been improved, increasing its scalability and
reliability, and reducing the overheads of all fault-tolerance operations.

CONTINUE ACROSS ERRORS
In ULFM, failures do not alter the state of MPI communicators.
Point-to-point operations can continue undisturbed between
non-faulty processes. ULFM imposes no recovery cost on simple
communication patterns that can proceed despite failures.

EXCEPTIONS IN CONTAINED DOMAINS
Consistent reporting of failures would add an unacceptable
performance penalty. In ULFM, errors are raised only at ranks where
an operation is disrupted; other ranks may still complete their
operations. A process can use MPI_[Comm,Win,File]_revoke to
propagate an error notification on the entire group, and could, for
example, interrupt other ranks to join a coordinated recovery.

FULL-CAPABILITY RECOVERY
Allowing collective operations to operate on damaged MPI objects
(Communicators, RMA windows or Files) would incur unacceptable
overhead. The MPI_Comm_shrink routine builds a replacement
communicator, excluding failed processes, which can be used to
resume collective communications, spawn replacement processes,
and rebuild RMA Windows and Files.

Master

W1

W2

Wn

Send (W1,T1)
Submit T1

Send (W2,T1)
Resubmit

Recv (ANY)
Detected W1

Recv(P1): failure
P2 calls RevokeP1

P2

P3

Pn

Recv(P1) Recv(P1): revoked

Recovery

P1

P2

P3

Pn

Bcast

Bcast

Shrink

Spaw
n

Bcast

ULFM-1.1 RELEASED

FUNCTIONALITY COVERAGE
Support for non-blocking version of the agreement MPI_Comm_Iagree

Compliance with the latest ULFM specification draft

Support for agreement on intercommunicators

PERFORMANCE IMPROVEMENT
New logarithmic algorithm to perform agreement (see our paper presentation @SC’15, Tue. 4:30pm Room 18CD)

New algorithm to perform communicator revocation (see our paper at EuroMPI’15, “Plan B: Interruption of Ongoing MPI Operations to
Support Failure Recovery”)

Faster algorithm for Context ID allocation, allowing a better scalability of communicators creation and recovery

RELIABILITY IMPROVEMENT
Improved support of basic network layer (TCP, Shared Memory)

Added support for High-Performance Networks (Open IB, uGNI)

Tuned collective module enabled by default, exhibiting performance boost compared to basic

Runtime integration (PBS/ALPS)
DOWNLOAD THE LATEST RELEASE

http://fault-tolerance.org/

Practical Scalable Consensus 5/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

ULFM Agreement Specification

int MPIX Comm agree(MPI Comm comm, int *flag);

MPIX COMM AGREE(COMM, FLAG, IERROR)

INTEGER COMM, FLAG, IERROR

comm the communicator on which to apply the consensus

flag An in/out integer: in input, the process participation,
in output, the result of the agreement on these ints
(bitwise and)

return value An error code if new process failures were
discovered during the agreement, or success

The operation implements an agreement on the couple (flag,

return code): all surviving process, despite any failure have the
same values in each (even if the return code is an error, flag is
defined).

Practical Scalable Consensus 6/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Specification

Correctness

Termination Every living process eventually decides.

Integrity Once a living process decides a value, it remains
decided on that value.

Agreement No two living processes decide differently.

Participation When a process decides upon a value, it contributed
to the decided value.

Traditional consensus relies on Validity
This is because one value is chosen.

ULFM does not require the consensus to be uniform

Practical Scalable Consensus 7/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Assumptions

Processes have totally ordered, unique identifiers

Any process belonging to a group knows what processes
belong to that group

Any process may be subject to a permanent failure

The network does not lose, modify, nor duplicate messages,
but communication delays have unknown bounds

The system provides a Perfect Failure Detector (P):

All incorrect processes are eventually suspected by all correct
processes
No correct process is ever suspected by any process

The operation of the consensus is associative and
commutative, and idempotent, with a known neutral element

Practical Scalable Consensus 8/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Outline

1 Introduction

2 Early Returning Agreement
Principle of the Algorithm
Trees Topologies
Algorithm
Multiple Agreements and Implementation

3 Performance Evaluation

4 Conclusion

Practical Scalable Consensus 9/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Principle and Notation

parent

left child right child

↑

↓

?

?

Processes are arranged following a mendable
tree topology: given a list of known dead
processes, they communicate or monitor the
liveliness of only their neighbors in that
topology.

The algorithm is a resilient version of Fan-in
/ Fan-out: all contributions (noted) are
reduced along the tree up to the root, that
broadcasts it

Deciding the result of the consensus for a
given process consists in remembering the
return value of the consensus, broadcasting it
to the current children, and returning as if
the consensus was completed.

Practical Scalable Consensus 10/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Principle and Notation

parent

left child right child

↑

↓

?

?

Alive processes can be in 3 states:

?, if they have not entered the consensus yet
↑, if they are waiting from the contribution
of their children
↓, if they have sent their contribution to
their parent and are waiting for the decision

, if they have received the decision

There are 3 types of messages:

, when a process sends its participation to
a parent

, when a process broadcasts the decision to
its children
?, when a process enquired about a possible
result of a completed consensus

Processes can monitor () other processes for failures

Practical Scalable Consensus 10/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Mendable Tree for Consensus

2 3

1

6 74 5

8 9 10 11 12 13 14 15

2

1

74 5

8 9 10 11 12 14 15

The Fan-in Fan-out tree used during the consensus is mended, as
failures are discovered during the execution.
The mending rule is simple: processes are arranged according to
their (MPI) rank following a breath-first search of the tree,
assuming no failure (left tree)

Practical Scalable Consensus 11/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Mendable Tree for Consensus

2 3

1

6 74 5

8 9 10 11 12 13 14 15

3

6 74 5

8 9 10 11 12 13 14 15

Nodes replace their parents by the highest-ranked alive ancester in
the tree in case of failure.
Processes without an alive ancestor in the original tree connect to
the lowest alive processor as their parent. The lowest alive
processor is always the root of the tree

Practical Scalable Consensus 11/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Mendable Tree for Consensus

2 3

1

6 74 5

8 9 10 11 12 13 14 15
8 9 10 11 12 13 14 15

If half the processes die, the tree can, in the worst case, degenerate
to a np/2-degree star

Practical Scalable Consensus 11/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Architecture-Aware Tree

To map the hardware network hierarchy, two levels of trees are
joined: In the example, representative processes of nodes (node0,
node1, node2, node3) are interconnected following a binary tree,
and processes belonging to the same node (16 process / node in
this case) are also connected following independent binary trees.

Practical Scalable Consensus 12/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

No Failure

↑ ↑

↑

↑ ↑↑ ↑

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Initially, all processes are in the state ↑ to provide their
participation, and the participation of their descendents to their
ascendent. Each process monitors its descendents for possible
failures () until they have participated.

Practical Scalable Consensus 13/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

No Failure

↑ ↑

↑

↑ ↑↑ ↑

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Leaves can send their participation () to their parent, and enter
the broadcasting state ↓. They start monitoring their parent for
possible failures ()

Practical Scalable Consensus 13/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

No Failure

↑ ↑

↑

↓ ↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Once a process has aggregated the participation of all its
descendents, it can forward the information upward and do the
same

Practical Scalable Consensus 13/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

No Failure

↓ ↓

↓ ↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Once a process has aggregated the participation of all its
descendents, it can forward the information upward and do the
same
The root process can decide as soon as all descendents have
contributed, it enters the decided state , starts broadcasting the
decided message () to its descendents, and stops monitoring
processes for failures

Practical Scalable Consensus 13/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

No Failure

↓ ↓

↓ ↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

When a process receives a decision message (), it decides, enters
the decided state , and broadcasts the decision to its
descendents, until all processes have decided

Practical Scalable Consensus 13/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

No Failure

↓ ↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

When a process receives a decision message (), it decides, enters
the decided state , and broadcasts the decision to its
descendents, until all processes have decided

Practical Scalable Consensus 13/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

No Failure

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

When a process receives a decision message (), it decides, enters
the decided state , and broadcasts the decision to its
descendents, until all processes have decided

Practical Scalable Consensus 13/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

No Failure

When a process receives a decision message (), it decides, enters
the decided state , and broadcasts the decision to its
descendents, until all processes have decided

Practical Scalable Consensus 13/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Failure before participating

↑ ↑

↑

↑↑ ↑

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Process P6 died before participating. P3, its parent, starts
monitoring it () when it enters the consensus (state ↑).

Practical Scalable Consensus 14/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Failure before participating

↑ ↑

↑

↑↑ ↑

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Processes P12 and P13 will send their participation () to P6, these
messages are lost, and they start monitoring () P6. P3 eventually
discovers the death of P6, and starts monitoring () its new
descendents P12 and P13.

Practical Scalable Consensus 14/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Failure before participating

↑ ↑

↑

↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Processes P12 and P13 eventually discover the death of P6, and
take P3 as their parent, sending it their participation (). They
also start monitoring () their new parent, P3.

Practical Scalable Consensus 14/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Failure before participating

↓ ↓

↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

The tree being fixed, the information simply flows along the
mended tree as initially.

Practical Scalable Consensus 14/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Failure before participating

↓ ↓

↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

The tree being fixed, the information simply flows along the
mended tree as initially.

Practical Scalable Consensus 14/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Failure before participating

↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

The tree being fixed, the information simply flows along the
mended tree as initially.

Practical Scalable Consensus 14/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Failure before participating

↓ ↓ ↓ ↓ ↓ ↓

The tree being fixed, the information simply flows along the
mended tree as initially.

Practical Scalable Consensus 14/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Failure before participating

The tree being fixed, the information simply flows along the
mended tree as initially.

Practical Scalable Consensus 14/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Failure After Participating

↓ ↓

↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Process P6 fails, but after participating to the current consensus.

Practical Scalable Consensus 15/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Failure After Participating

↓ ↓

↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

If it was a leaf, that would not prevent the consensus to complete.
Since it has children, and they have not received the decision ()
yet, they are monitoring () it, and eventually discover the death

Practical Scalable Consensus 15/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Failure After Participating

↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

They send their participation () back to their grand-parent, P3,
starting to monitor it (). This ensure that if P6 died before
forwarding it upward, their participartion () is not lost. This also
reconnects the tree.

Practical Scalable Consensus 15/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Failure After Participating

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Even if P3 is already done with the current consensus, it
remembers the result (ERA property), and provides the result ()
again, allowing the information to continue flowing down the tree.

Practical Scalable Consensus 15/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Failure After Participating

Even if P3 is already done with the current consensus, it
remembers the result (ERA property), and provides the result ()
again, allowing the information to continue flowing down the tree.

Practical Scalable Consensus 15/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Failure of Root

↓

↓ ↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

If the root of the tree dies after it started broadcasting the
decision, but before it could reach all its children, the ones that did
not receive the decision () are still monitoring that dead root ().

Practical Scalable Consensus 16/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Failure of Root

↓

↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

?

If a process becomes the root (lowest identifier), but was waiting
for a decision, it asks all its new children if they received a decision
before, by sending the message (?), and monitoring them ().

Practical Scalable Consensus 16/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Failure of Root

↓

↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

If one of them has the decision, it answers with it and the root can
decide and broadcast (). If none has it, they provide their
participation (), if they reached that step, and wait for the
decision of the new root.

Practical Scalable Consensus 16/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Failure of Root

↓ ↓

↓ ↓ ↓ ↓

The broadcast of the decision () then continues along the tree

Practical Scalable Consensus 16/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Failure of Root

↓ ↓ ↓ ↓

The broadcast of the decision () then continues along the tree

Practical Scalable Consensus 16/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Failure of Root

The broadcast of the decision () then continues along the tree

Practical Scalable Consensus 16/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Implementation

Agreements are identified by a tuple (CID,CEPOCH,ANUMBER):

CID is the communicator Identifier

CEPOCH Epoch of the communicator – Epochs are changed
every time a new communicator is created, and
reflect how many failures were known at the time of
creation

ANUMBER is the sequence number of the current agreement.

Current values of the agreements, progress status, and past values
of past agreements are stored in hash tables.
The ERA is implemented at the BTL level, below the matching
and message layer mechanisms.

Practical Scalable Consensus 17/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Garbage Collection

When multiple consensus are executed on the same group of
processes, processes executing ERA need to remember each
consensus result. This can lead to memory exhaustion.
ERA implements a Garbage Collection mechanism to forget past
consensus that will not be requested in the future.
That mechanism is implemented using the consensus operation
itself: in addition to the consensus value, processes agree in the
message on past consensus that can be collected.

How to cleanup?

The last consensus is cleaned up by introducing an asynchronous
ERA in the destructor of the communicator.
The result of this last ERA does not need to be remembered: if the
communicator has been released, then all processes participated, and
the return value is ignored.

Practical Scalable Consensus 18/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Tree-Rebalancing

As processes crash, the Fan-in / Fan-out tree used to implement
the two phases of the consensus can become unbalanced.

To implement the ULFM specification, all processes must agree on
a list of failed nodes. Trees can be re-balanced when starting a
new agreement based on that information.

Practical Scalable Consensus 19/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Outline

1 Introduction

2 Early Returning Agreement

3 Performance Evaluation
Agreement Performance
S3D and FENIX
MiniFE and LFLR Framework

4 Conclusion

Practical Scalable Consensus 20/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Environment

NICS Darter: Cray XC30
(cascade)

ugni transport layer, with
Aries interconnect
sm transport layer for
shared memory
Scalability runs: 16 -
6,500 processes

Benchmark:

MPIX COMM AGREE in loop
Measure duration:

before failure
during failure
stabilizing after failure
after stabilization

Practical Scalable Consensus 21/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Agreement scalability in the failure-free case

���

����

����

����

����

����

����

����

����

����

��� ��� ��� ���� ���� ���� �� �� ��

�
�

����������

���

����������
�����������������
���������������
����������������������

Practical Scalable Consensus 22/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

ERA performance depending on the tree topology

���

���

���

���

����

����

����

����

�� �� �� �� �� ��

�
�

����������

��������������������������

��������������������
������������������
�����������������
��������������������������
����������������������

Practical Scalable Consensus 23/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Post Failure Agreement Cost

�������

�������

�������

�������

�������

�������

�� �� �� �� �� ��
����������

��������������������������������
����������������������������

�������

�������

�������

�������

�
�

�����������������
������������������

�������

�������

�������

�������

���������������������������������������

���������������������

��
�

��
�

Practical Scalable Consensus 24/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

S3D and FENIX

S3D

Highly parallel method-of-lines solver for partial differential
equations

first-principles-based direct numerical simulations of turbulent
combustion

ported to all major platforms, demonstrates good scalability
up to nearly 200K cores,

FENIX

Online, Transparent recovery framework

Encapsulates mechanisms to transparently

capture failures through ULFM return codes,
re-spawn new processes on spare nodes when possible,
fix failed communicators using ULFM capabilities,
restore application state, and return the execution control back
to the application

Practical Scalable Consensus 25/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

FENIX & S3D Performance

0

5

10

15

20

25

16 32 64 128
256

512
1024

O
v
e
rh

e
a
d

o
f

R
e
c
o
v
e
ry

(s
)

Number of simultaneous core failures

shrink with Log2phases
shrink with ERA

1
3
3
1

2
1
9
7

3
3
7
5

4
0
9
6

4
9
1
3
0

4
9
1
3
1

4
9
1
3
2

5
8
3
2

6
8
5
9

8
0
0
0

9
2
6
1

Number of cores

25

20

15

10

5

0

Simultaneous failures on an
increasing number of cores, over

2197 total cores

256-cores failure (i.e., 16 nodes)
on an increasing number of total

cores

Practical Scalable Consensus 26/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

MiniFE and LFLR Framekwork

MiniFE

Part of Mantevo mini-applications suite

MiniFE performs a linear system solution with relatively quick
mesh generation and matrix assembly steps.

Modified version: performs a time-dependent PDE solution,
where each time step involves a solution of a sparse linear
system with the Conjugate Gradient (CG) method

LFLR Framework

Local Failure Local Recovery is a resilient application
framework

leverages ULFM to allow on-line application recovery from
process loss without the traditional checkpoint/restart

layer of abstraction classes to support commit and restore

methods

Works with active spare processes pool
Practical Scalable Consensus 27/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

MiniFE and LFLR Performance

0.00	

2.00	

4.00	

6.00	

8.00	

10.00	

12.00	

14.00	

512	 1024	 2048	

Ex
ec
u&

on
	 T
im

e	
(in

	 se
co
nd

s)
	

Number	 of	 Processes	

Log2phase	

ERA	

0	
5	
10	
15	
20	
25	
30	
35	
40	

512	 1024	 2048	
Number	 of	 processes	

Process and communicator
recovery

Global agreement during 20 time
steps.

Practical Scalable Consensus 28/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Outline

1 Introduction

2 Early Returning Agreement

3 Performance Evaluation

4 Conclusion

Practical Scalable Consensus 29/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Conclusion

Summary

ERA is a Logarithmic Agreement, in number of messages and
in computation

ERA allows processes to return early from the routine itself,
serving potential late requests in the background

Its implementation in ULFM / Open MPI shows performance
comparable to an optimized non-fault-tolerant AllReduce

Improvement of agreement translates into improvement of
other routines (shrink).

Future Work

Failure Detection is the next performance bottleneck

ERA relies on perfect failure detection (P)

Implementing a low-latency / low-probability of false positive
failure detector is a challenge

Practical Scalable Consensus 30/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Why not use Paxos?

Proposer A

Proposer B

Acceptor X

Acceptor Y

Acceptor Z

Learner L

A B X Y Z L

Prepare

Prepare
Prepare

PrepareResp

PrepareResp

Accept
Accept

Accept

Accepted

PAXOS provides reliability in
persistant environments (intermittent
failures and persistent storage space;
message loss and dupplication)

It relies on replication of information:
requests are sent to multiple processes,
and a majority must acknowledge

Given our different requirements, we
can achieve lower latencies in the
failure-free case,

Decision in PAXOS is upon one
proposed value, while we need a
combination of proposed values

Practical Scalable Consensus 31/ 32

Introduction Early Returning Agreement Performance Evaluation Conclusion

Multiple Phase Commit Agreements

“Scalable distributed consensus
to support MPI fault tolerance”:

Three Phase Commit:

Ballot number is chosen
Value is proposed
Value is committed

Reliable P.I.F. (O(log2(n))
comm., O(1) comp.)

“A Log-scaling Fault Tolerant
Agreement Algorithm for a Fault
Tolerant MPI”:

Two Phase Commit

Fan-in / Fan-out
approach

Fatal errors when the root
dies during the agreement

O(log2(n)) comm., but
O(n) comp.

Practical Scalable Consensus 32/ 32

	Introduction
	Motivation and Context
	Formal Framework

	Early Returning Agreement
	Principle of the Algorithm
	Trees Topologies
	Algorithm
	Multiple Agreements and Implementation

	Performance Evaluation
	Agreement Performance
	S3D and FENIX
	MiniFE and LFLR Framework

	Conclusion

