Application-driven Fault-Tolerance
for High Performance Distributed
Computing.

Franck Cappello
Argonne/MCS, UIUC

George Bosilca
University of Tennessee at Knoxville

—— @ ENERGY

Agenda

* Introduction: 0h30
— 5 minutes motivation (failure rates) - Franck
— 10 minutes checkpoint/restart (application level versus system level) - Franck
— 15 minutes alternatives (ULFM, Replication, etc.) George.
 VeloC and Hands-on installation: 1h15 - Franck
— 25 mins -> VeloC presentation
— 5 mins -> questions
— 45 mins -> hands-on-session

e 15 minutes of buddle installation

* 30 minutes of VeloC (Bogdan on rescue, if needed)
— Configuration: 10 minutes
— Filling the gap in the heat equation: 10 minutes
— Playing with failures: 10 minutes

 ULFM: 1h15 - George
— 25 mins -> ULFM presentation
— 5 mins -> questions
— 45 mins -> hands-on-session

* 30 min on ULFM
* 15 minutes on ULFM + VeloC.

Why FT for HPC?

FT need for HPC was marginal because HPC system MTBF
were high enough (1 week, 1 month). This is not true anymore
for large systems today (MTBF of 1 day and less are seen)

It can only get worse with the increase of the number of
components and component complexity

There is no compromise:

— Fault tolerance is not like other problems of HPC (performance,
efficiency, power consumption, etc.) = there is no half success:

— Application execution succeeds with correct results or fails!

Clouds are starting considering HPC applications and Cloud
nodes have typically a much lower MTBF than HPC nodes.

Some important definitions

From Avizienis, Laprie et al.:

Definition from the notion of service: a sequence of the system’s external
states (perceived by users)

Copractcarvicaric dalivarad whan tha carvica imnlamantctha cuctam

Example:

Se| A) A particle hits a DRAM cell and generates a fault

B) The fault changes the DRAM cell state and becomes an error

C) The error does not affect the rest of the system until a process reads
the cell

D) The error propagates as a failure if after the read of the memory cell
the software computation, control or I/O deviates from the behavior

it would have had from a correct memory cell
m

e Fault: The adjudged or hypothesized cause of an error (root cause of the
failure)

Specific Error Outcomes in HPC

Types of errors:

 Power outage 6—Gibson
100
 Hard errors (broken component: memory, Farvare
. Software
network, core, disk, etc.) 0l | ENetvork
[_]Environmen
EllHuman

To tolerate these errors, current systems essentially follow a
masking approach:
-Mask transient/soft errors at the hardware level

-Checkpoint-restart for process failure (errors that eventually lead to
application crash)

CIative LL\.«\lLI-\.«ll\.«y Ul 1UUL

» User errors (Human) cause by system type.

Classes of errors:

 Detected and corrected (by ECC, Replication, Re-execution)
» Detected and uncorrectable (leading to application crash)

» Undetected (leading to data corruption, application hang, etc.)

MTBF 10 Years Ago?

| IBM Research -

Blue Gene Hardware Reliability: Argonne Data

BG/L System Design Target:
— 64 Racks/131k cores MTBF should be greater than 7 Days Paul Coteus, IBM

= Comparison of actual data made by ANL Labs
— asked a number of facilities for reliability data.

Multi teraflop IA64 or X86 systems have 100’s to 1000’s of individual compute nodes.

* For comparison between different systems, fail rates are normalized to peak system
performance in teraflops

System Peak System [Full System Failures Failures per [Failures

Type Performance [Mean Time per Month |Month per Jper Month
(Teraflops) Between Failures Teraflop per BG

IAG4 3.0 1.3 24 0 8.000

IAG4 10.7 1.1 28.3 2.645

x86 1.7 45 6.7 3.941

x86 17.2 0.7 451 2622

Power 5 15.0 1.1 19.0 1.267

Blue Gene 365.0 7.5 40 0.011_ 0.06

| HPC at Petascale and Beyond 8/4/2007 © 2007 |IBM Corporation

MTBF 5 years ago

e Two classes:

— Based on proprietary components: IBM designs BG line with a full system

MTBF of 7 days (true for BG/L, BG/P, BG/Q?) paul Coteus. IBM
FIT per Components per | FIT per

Component Component 64K System System
DRAM 5 608,256 | 3,041K
Compute + I/O ASIC 20 66,560 | 1,331K
ETH Complex 160 3,024 484K
Non-redundant power supply 500 384 384K
Link ASIC 25 3,072 TTK
Clock chip 6.5 1,200 8K
Total FITs 5,315K

Table 6.12: BlueGene FIT budget.
— Using commodity components (Intel, AMD processors, etc.): MTBF of

about 1 day (some less, some merelfar systems with 100,000+ cores
e CEA TeralOO0 (6 in the top500) @ the whole machine, 4300 nodes, 140 000
cores, 500 Gb/s global file system B2 , 300 TB memory

 Jeffrey Vetter (ORNL):
Jaguar XTS5 status, April 2009

* Driver for downtimes: Spider testing
Stable
\ ; » System has been up as long as 10 days

Current failure rates

Fault Local Consequence Cascading Consequence Mean Time
between Faults
Node failures User processes running on | Full user execution crash BW36.7h
(some hardware the node crashes because the runtime of the [Mar14]
or OS part of the resource/job manager decides | Titan3: 7.5 h
node fail leading to kill the execution (R1) or [Tiw14]

to a complete
failure of the

because of a cascading to full
system outage (R2)

resulting in
mean time to

node)? application
failure of 40 h
[TGR15]
Network failure The user processes that Potential full user execution BW: 20 h (link
cannot communicate crash because of R1. Also if failure)
experience time-outs on the execution was not able to [Mar14]

communication. OS or
runtime may kill these
processes. The affected
processes may crash on
their own. However, user
processes may be able to
tolerate transient network
shoot down/rerouting.

checkpoint because of
network failure, then it will
need to restart from the
previous checkpoint (C1).

2 For example, GPU bus errors (disconnection of the GPU), voltage fault, kernel panic, PCI

width degrade, machine check exception, and SXM (PCI) power off observed in Titan lead to

process crashes [Gup15].

3 Time between failures of any node in the system. Each node MTBEF is typically 25 years in
& these systems [Tiw14].

Interval between failure can be << MTBF |

This observation holds for other systems (including old ones)

........... MTBF

9 | , 14.0% . 14.0% ;
0 30.0% ; 8 LANL System 4 0 LANL System 5
5 55 0 5 12.0% o « 5 12.0% b «
B 8 8
£ *~ 10.0% * 10.0%
T 20.0% It o
5 S 8.0% S 8.0%
“— o Y— Y—
= 15.0% S 0% o 6.0%
o o o
& 10.0% S 4.0% S 4.0%
S @ 3
8 5.0% O 2.0% O 2.0%
g £ 0.0% £ 0.0%

0, . (o) . (0)

0:0% 50 A> 0 o S N N RN O 10 0 L L O

Time between two failures (in hours) Time between two failures (in hours) Time between two failures (in hours)

n 18.0% : , n 16.0% ; , » 20.0% —
g 16.0% _ LANL System 18 g 14.0% LANL System 19 g L?NL System 20
& 14.0% £ 12.0% £ 15.0%
5 8.0% s 8.0% %5 10.0%
% 6.0% : % 6.0% %
§ 4.0% § 4-0:A> § 5.0%
E 2.0% E 2.0% E
00T o 0 p %o s 0 19 0:0% 75 T0 4> 40 99
Time between two failures (in hours) Time between two failures (in hours) Time between two failures (in hours)

Devesh Tiwari, Saurabh Gupta, Sudharshan Vazhkudai, Lazy Checkpointing: Exploiting Temporal Locality in Failures to Mitigate Checkpointing
%erheads on Extreme-Scale Systems, Proceedings of the Annual IEEE/IFIP Int’| Conference on Dependable Systems and Networks (DSN), 2014.

Documents and tools

* Fault tolerance for Distributed system is a not a new but it is a young domain for Parallel Commuting
. Books/articles related to Faults, Errors, Failures and distributed computing

A. Avizienis et al. "Basic Concepts and Taxonomy of Dependable and Secure Computing”, IEEE Transactions on
dependable and secure computing, Vol.1, No 1 January-March 2004

N. Lynch “Distributed Algorithms”, Morgan Kaufmann Publishers Inc. 1996 ISBN:1558603484

E. EInozahi “A Survey of Rollback-Recovery Protocols in Message Passing Systems”, ACM Computing Survey, Vol. 34,
No. 3, pp. 375-408, September 2002.”

* Article related to FT/Resilience in Parallel Computing

F. Cappello et Al. “Toward Exascale Resilience”. IJHPCA 23(4): 374-388 (2009)

F. Cappello “Fault Tolerance in Petascale/ Exascale Systems: Current Knowledge, Challenges and Research
Opportunities”. IJHPCA 23(3): 212-226 (2009)

M. Snir, R. W Wisniewski, J. A Abraham, S. V Adve, S. Bagchi, P. Balaji, J. Belak, Pradip Bose, F. Cappello, B. Carlson, A. A
Chien, P. Coteus, N. A DeBardeleben, P. C Diniz, C. Engelmann, M. Erez, S. Fazzari, A. Geist, R. Gupta, F. Johnson, S.
Krishnamoorthy, S. Leyffer, D. Liberty, S. Mitra, T. Munson, R. Schreiber, J. Stearley, E. Van Hensbergen, Addressing
Failures in Exascale Computing, International Journal of High Performance Computing Applications, vol. 28, num. 2,
pages 127-71, May 2014.

C. Di Martino, Z. Kalbarczyk, R. K. lyer, F. Baccanico, J. Fullop, and W. Kramer. 2014. Lessons Learned from the Analysis of System

Failures at Petascale: The Case of Blue Waters. In Proceedings of the 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN '14).

C. Di Martino, W. Kramer, Z. Kalbarczyk, R. lyer, Measuring and Understanding Extreme-Scale Application Resilience: A Field
Study of 5,000,000 HPC Application Runs, in Dependable Systems and Networks (DSN), 2015

D. Tiwari, S. Gupta and S. Vazhkudai, Lazy Checkpointing: Exploiting Temporal Locality in Failures to Mitigate
Checkpointing Overheads on Extreme-Scale Systems, IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2014

D. Tiwari, S. Gupta, G. Gallarno, J. Rogers, and D. Maxwell. Reliability lessons learned from GPU experience with the

Titan supercomputer at Oak Ridge leadership computing facility. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC '15), 2015.

D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai, D. Oliveira, D. Londo, N. DeBardeleben, P. Navaux, L.
Carro, A. Bland, A., Understanding GPU errors on large-scale HPC systems and the implications for system design and
operation, High Performance Computer Architecture (HPCA), 2015

B. Schroeder and G. Gibson, Understanding failures in petascale computers. Journal of Physics: Conference Series 78:012022,
2007

Principle of Checkpoint restart

Full execution Checkpoint-Restart:

e e ————
P T >
— AR e
.‘ --------------- 3—
e e > |
._{ ----------- Detg;non
BA===——""""""" I
== :S?;El
L= —> |
.—(_______________ = |
g el >
—J ===t el
L e >
e e e et ==
DA L bl .
L > |
Checkpoints Restart message
on remote

file system

Checkpointing techniques

A checkpoint is just a ‘snapshot’ of a process (or system) at a certain point in time

A checkpointing system provides a way to take these snapshots, and to restart from them

Type of checkpoint mechanisms:

Bottom of Stack

Kernel & User (System) Level
Easy to add checkpointing to existing code o
Works with (almost) any programs
General, ‘coarse’, approach (the full state of each process is saved)
Examples: Libckpt, BLCR, DMTCP (Boston University) Sedata

&etext

sbrk(0)

Application Level 0
Could require modifications
Different APl (memory level, file level)
‘fine’ grain approach: only the sections of the state necessary to restart is saved
Examples: FTI, SCR, VeloC

Parallel Checkpointing

Coordinated Checkpoint

The objective is to checkpoint the application
when there is no in transit messages between

any two nodes
Coordination:

- Automatic through a protocol (Chandy-
Lamport) 2 not needed in SPMD apps.

- Implicit: application level

Uncoordinated Checkpoint

No global synchronization (scalable)
—>Nodes may checkpoint at any time
(independently of the others)

—>Need to log undeterministic events: In-
transit Messages = too complex

restart w_

detection/
global stop

failure T T T
o &0
sy —@—@—@—@—

Nodes

restart
detection

failure T
Ckpt ® O O O

Application Level Implicitly
Coordinated Parallel Checkpointing

Example: heat distribution SPMD code

while(i < ITER_TIMES) {
localerror = doWork(nbProcs, rank, M, nbLines, g, h);
1t (C(1 % ITER_OUT) == @) && (rank == 0))
printf(, 1, globalerror);
1f ((1 % REDUCE) == 0)
MPI_Allreduce(&localerror, &globalerror, 1, MPI_DOUBLE, MPI_MAX,
MPI_COMM_WORLD);
1f (globalerror < PRECISION)
break;
1++;
1f (1 % CKPT_FREQ == 0) {
FILE *outFile = fopen(“checkpoint”, “wb”);
fwrite(&I, sizeof(int), 1, outFile);
fwrite(Ch, sizeof(double), M * nblLines, outFile);
fwrite(g, sizeof(double), M * nbLines, outFile);

Where to checkpoint

Example: SCR (LLNL) result: Aggregate checkpoint
bandwidth to node-local storage scales linearly on
Coastal

#-Single RAM disk 10000 <€

Partner RAM disk
5<XOR RAM disk L(_)CE" on RAM
-#-Single SSD disk 1,000x
4-XOR SSD 1000
—-Partner SSD €
@ Lustre (10GB/s peak) Partner / XOR on

% 100 RAM disk 100x

L
& SSDs 10x

10 faster than
<«—PFS

1 Parallel file system
built for 10GB/s

0.1
4 8 16 32 64 128 256 512 992

Nodes

When to checkpoint

[Young 74] Let’s assume that our system failure rates follow the bath tub pattern.
We are interested to compute the checkpoint interval for the constant failure rate regime

Constant
Failure
Rate

Decreasing
+ Failure
Rate

Increasing
Failure
Rate

2 | Early 1 Observed Failure
& | “Infant Rate
@ | ° Mortality” | |
= ‘. Failure | |
' " 1 Constant (Random) |
L | Failures |
I i
I I
el 1
R LT PP L TP
| | >
Time

The main formula used to
compute checkpoint
Intervals in HPC systems.

A more accurate formula by
John Daly that integrate
restart time.

Well modeled by the

Exponential distribution
Failure density function:

e ™M x>0,

T:A) = -

fl:) 0. T <0,
MTBF=1/ A

Failure rate

Interval = \l 2 x checkpoint-time x MTBF

John W. Young, « A first order approximation to the optimum checkpoint
interval », Communications of the ACM, Volume 17 Issue 9, Sept. 1974

T=+26(M + R) -6

Interval

Rst time Ckpt time

