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Preparing for the hands-on

• Source code of all examples:
https://fault-tolerance.org/downloads/europar18-handson.tgz
• Run with The ULFM Docker image 

1. Install Docker (requires external download)
2. docker pull bnicolae/veloc-tutorial (requires external download)
3. Download source code tarball (requires external download)
4. Open terminal and source dockervars.sh
5. mpirun -np 10 example
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https://fault-tolerance.org/2018/08/27/europar18-tutorial/

https://fault-tolerance.org/downloads/europar18-handson.tgz
https://fault-tolerance.org/2018/08/27/europar18-tutorial/
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Fault Tolerance: many solutions

• No checkpoint, no message logging
• Overhead due to synchronizations between replicas

• Benefit: Possible soft error detection and recovery

4

Coordinated checkpoint
(with blocking,

constant checkpoints)

1. Full dual hardware redundancy for all applications, re-
sulting in a maximum possible efficiency for state ma-
chine replication of 50%.

2. The MPI library is the only potential source of non-
determinism in the application.

3. Machines suffer only crash failures, not more general
failures from which checkpoint/restart may not be able
to recover. While this replication approach can handle
a more general fault model, the numbers in this paper
do not include the checks required to handle a more
general fault model.

4. Based on past study results [37], system MTTI de-
creases linearly with increased system socket count.

5. MODEL-BASED ANALYSIS
We first examine the performance benefits of state ma-

chine replication compared to its fundamental redundant
hardware costs. For this initial comparison, we assume every
MPI process is replicated, and make very simple assump-
tions about system characteristics, particularly that there
is no software overhead for maintaining replica consistency,
that the system can checkpoint in a fixed amount of time
regardless of scale, and that all failures follow a simple expo-
nential distribution. These assumptions will be successively
relaxed in the following sections.

When two nodes are used to represent the same MPI rank,
the failure of one node in a pair does not interrupt the ap-
plication. Only when both nodes fail does the application
need to restart. The frequency of that occurring is much
lower than the occurrence of a single node fault and can be
characterized using the well-known birthday problem.

One version of the birthday problem asks how many peo-
ple on average need to be brought together until there are
enough to have a greater than 50% chance that two of them
share the same birth month and day. If we equate days in a
year with nodes and let the number of people represent the
faults occurring, we can use the birthday problem to calcu-
late how many faults can occur until both nodes in a pair
are damaged and cause an application interrupt.

Equation 1, from [24, 19], shows how to calculate this
version of the birthday problem.
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Essentially, replicas act like a filter between the system
and an application, and the birthday problem helps us esti-
mate how many faults can be absorbed before the applica-
tion is interrupted.

Figure 1 estimates the resulting application efficiency with
optimal checkpoint intervals for both state machine replica-
tion and using only traditional checkpoint/restart. MTTI
was computed directly from the birthday problem approxi-
mation in Equation 1, while the resulting efficiency is com-
puting using Daly’s higher-order checkpoint/restart model
and optimal checkpoint interval [10]. These calculations as-
sume a 43800 hour (5 year) per-socket MTBF based on past
studies [37, 18], 15 minute checkpoint times as discussed in
Section 2.1, and a 168 hour application solve time.

These results show the dramatic increase in system MTTI
that state machine replication provides, allowing it to main-
tain efficiency close to 50% as system socket count increases
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Figure 1: Modeled application efficiency with and
without state machine replication for a 168-hour ap-
plication, 5-year per-socket MTBF, and 15 minute
checkpoint times. Shaded region corresponds to
possible socket counts for an exascale class machine
[4].

dramatically towards the 200,000 heavyweight sockets sug-
gested for exascale systems [4]. In contrast, the efficiency of
a checkpointing-only approach drops precipitously as system
scales approach those of upcoming exascale systems.

6. RUNTIMEOVERHEADOFREPLICATION
While the previous sections demonstrate that state ma-

chine replication is viable at exascale in terms of the basic
hardware costs, they do not evaluate the runtime overhead of
the necessary consistency management protocols. Transpar-
ently supporting state machine replication for MPI applica-
tions on HPC systems requires maintaining sequential con-
sistency between replicas. It also requires protocols for de-
tecting and repairing failures. As mentioned in Section 2.2,
these are potentially expensive in communication-intensive
HPC systems as every replica must see messages arrive in
the same order.

To study this overhead, we designed and implemented
rMPI, a portable user-level MPI library that provides re-
dundant computation transparently to deterministic MPI
applications. rMPI is implemented on top of an existing
MPI implementation using MPI profiling hooks. In the re-
mainder of this section, we outline the basic design and im-
plementation of rMPI and measure the runtime overhead of
this implementation for several real applications on a large
scale Cray XT-3/4 system. A complete description of rMPI,
including low-level protocol and implementation details is
available elsewhere [15, 5].

6.1 rMPI Design
The basic idea for the rMPI library is simple: replicate

each MPI rank in an application and let the replicas continue
when an original rank fails. To ensure consistent replica
state, rMPI implements protocols that ensure identical mes-
sage ordering between replicas. Unlike more general state
machine replication protocols [36, 7], these protocols are spe-
cific to the needs of MPI in an attempt to reduce runtime
overheads. In addition, rMPI uses the underlying Relia-
bility, Availability and Serviceability (RAS) system to de-
tect node failures, and implements simple recovery protocols
based on the consistency protocol used.

Evaluating the Viability of Process Replication Reliability for Exascale Systems 
-- Kurt Ferreira, Jon Stearley, James H. Laros III, Ron Oldfield, Kevin Pedretti, 
Ron Brightwell, Patrick G. Bridges, Dorian Arnold and Rolf Riesen – SC’11

• Rollback Recovery
• Not only the legacy approach
• Checkpoint/Restart based
• Many possible improvements (in 

memory, buddy, async, hierarch,…)

• Forward Recovery
• Replication (the only system level 

Forward Recovery)
• Master-Worker with resubmission
• Iterative methods, Naturally fault  

tolerant algorithms
• Algorithm Based Fault Tolerance



Fault Tolerance: many solutions
• Rollback Recovery
• Not only the legacy approach
• Checkpoint/Restart based
• Many possible improvements (in 

memory, buddy, async, hierarch,…)

• Forward Recovery
• Replication (the only system level 

Forward Recovery)
• Master-Worker with resubmission
• Iterative methods, Naturally fault  

tolerant algorithms
• Algorithm Based Fault Tolerance
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• Any technique that permit the application 
to continue without rollback

No checkpoint I/O overhead
No rollback, no loss of completed work
May require (sometime expensive, like 
replicates) protection/recovery operations, 
but generally more scalable than 
checkpoint
Often requires in-depths algorithm rewrite
(in contrast to automatic system based C/R)

“Why is not everybody doing this already, 
then?”



Algorithm Based Fault Tolerance (ABFT)
• Takes advantage of existing mathematical relationship(s)
• Introduced (cheaply, if possible) by ABFT

• KH Huang & Jacob Abraham, ABFT for Matrix Operations, IEEE Trans. 
Computers. 01/1984;

• Matrix extended to contain 
additional information.
• Extra column or row 

contains checksum.
• Matrix algorithm designed to 

operate on the data and the 
encoded checksum.
• Checksum invariant during 

the course of the algorithm.
• No checkpoint needed.
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Matrix M x N, Blocks mb x nb,
Process grid p x q

• Matrix is extended with 2F 
columns every q columns a

O(
F

q
⇥M ⇥N)

N.B. Usually F << q
Relative overheads in F/q

e.g. 2 simultaneous faults on 192x192
process grid => 1% memory  overhead

Memory Overhead Computation Overhead

flops for the checksum update, 
and

flops for the checksum creaFon.
Less than 5% computaBonal 
overhead

O(MN)

F: maximum number of 
simultaneous failures tolerated

O(
F

q
⇥M

3)

For Dense Linear Algebra Factorizations (POTRF, QR, LU)



Mixed resilient solutions (model)
• An iterative application using a resilient library
• Protect the application with traditional checkpoint/restart
• Protect the library with new techniques (ABFT)

≠ Exascale machine: same comp increase
Memory per component remains constant
Problem size increases (O(√n): matrix based)
µ at n=105 1 day is O(1/n)
C (=R) at n=105 is 1m, independent of n (O(1))
80% in library, 20% in application

• Augment the initial data with extra 
information (e.g. checksum)
• Maintain this extra information through the algorithm
• Allow soft and hard error survival

• Library using ABFT: dense and sparse 
LA, matrix-matrix multiplications, one-
sided and two-sided factorizations, CG, 
GMRES

Weak Scale Scenario #2
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Mixed resilient solutions (model)
• An iterative application using a resilient library
• Protect the application with traditional checkpoint/restart
• Protect the library with new techniques (ABFT)

≠ Exascale machine: same comp increase
Memory per component remains constant
Problem size increases (O(√n): matrix based)
µ at n=105 1 day is O(1/n)
C (=R) at n=105 is 1m, is in O(n)
80% in library, 20% in application
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• Augment the initial data with extra information (e.g. 

checksum)
• Maintain this extra information through the algorithm
• Allow soft and hard error survival

• Library using ABFT: dense and sparse LA, matrix-matrix 
multiplications, one-sided and two-sided factorizations, 
CG, GMRES



Mixed resilient solutions (model)
• An iterative application using a resilient library
• Protect the application with traditional checkpoint/restart
• Protect the library with new techniques (ABFT)
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VeloC: Very Low Overhead Transparent 
Multilevel Checkpoint/Restart

Franck Cappello
Bogdan Nicolae



Algorithm Based Fault Tolerance (ABFT)
• Takes advantage of existing mathematical relationship(s)
• Introduced (cheaply, if possible) by ABFT

• KH Huang & Jacob Abraham, ABFT for Matrix Operations, IEEE Trans. 
Computers. 01/1984 for systolic array

• Matrix extended to contain 
additional information.
• Extra column or row 

contains checksum.
• Matrix algorithm designed to 

operate on the data and the 
encoded checksum.
• Checksum invariant during 

the course of the algorithm.
• No checkpoint needed.
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What is the status of FT in MPI 3.0?

• Total denial
• “After an error is detected, the state of MPI is undefined. An MPI implementation is free to allow MPI 

to continue after an error but is not required to do so.“

• Two forms of management
• Return codes: all MPI functions return either MPI_SUCCESS or a specific error code 

related to the error class encountered (eg MPI_ERR_ARG)
• Error handlers: a callback automatically triggered by the MPI implementation before 

returning from an MPI function.
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Error Handlers
• Can be attached to all objects allowing data transfers:

communicators, windows and files
• Allow for minimalistic error recovery: the standard suggests only non-MPI related 

actions, and no collective operations
• All newly created MPI objects inherit the error handler from their parent
• A global error handler can be specified by associating an error handler to MPI_COMM_WORLD right after MPI_Init

14

typedef void MPI_Comm_errhandler_function (MPI_Comm *, int *, ...);
MPI_Comm_create_errhandler(errh, errhandler_fct);
MPI_Comm_set_errhandler(comm, errh);
• Attach a declared error handler to a communicator
• Newly created communicators inherits the error handler that is associated with their parent
• Predefined error handlers: 
• MPI_ERRORS_ARE_FATAL (default)
• MPI_ERRORS_RETURN



Requirements for MPI standardization of FT

• Expressive, simple to use
• Support legacy code, backward compatible
• Enable users to port their code simply
• Support a variety of FT models and approaches

• Minimal (ideally zero) impact on 
failure free performance
• No global knowledge of failures
• No supplementary communications to maintain 

global state
• Realistic memory requirements

• Simple to implement
• Minimal (or zero) changes to existing functions
• Limited number of new functions
• Consider thread safety when designing the API

Minimal Feature Set for FT MPI 
•  Failure Notification 
• Error Propagation 
• Error Recovery 

Not all recovery strategies  
require all of these features,  
that’s why the interface splits  
notification, propagation and recovery. 
ULFM is not a recovery strategy, but a minimalistic 
set of building blocks for more complex recovery 
strategies. 
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SHRINK | AGREE 



Minimal Feature Set for a Resilient MPI 
• Failure Notification
• Error Propagation
• Error Recovery 

Not all recovery strategies
require all of these features,
that’s why the interface splits
notification, propagation and 
recovery.

ULFM is not a recovery strategy, but a
minimalistic set of building blocks for
implementing complex recovery 
strategies. 

Minimal Feature Set for FT MPI 
•  Failure Notification 
• Error Propagation 
• Error Recovery 

Not all recovery strategies  
require all of these features,  
that’s why the interface splits  
notification, propagation and recovery. 
ULFM is not a recovery strategy, but a minimalistic 
set of building blocks for more complex recovery 
strategies. 
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Failure Notification
• MPI stands for scalable parallel applications it would be 

unreasonable to expect full connectivity between all peers
• The failure detection and notification

should have a neighboring scope: 
only processes involved in a 
communication with the failed process
might detect the failure

• But at least one neighbor should be informed about a failure
• MPI_Comm_free must free “broken” communicators and 

MPI_Finalize must complete despite failures.

17



Error Propagation

• What is the scope of a failure? Who should be notified about?
• ULFM approach: offers flexibility to allow the library/application 

to design the scope of a failure, and to limit the scope of a 
failure to only the needed participants
• eg. What is the difference between a Master/Worker

and a tightly coupled application ?
• In a 2d mesh application how many nodes

should be informed about a failure?

18



Error Recovery

• What is the right recovery strategy?
• Keep going with the remaining processes?
• Shrink the living processes to form a new consistent 

communicator?
• Spawn new processes to take the place of the failed ones?
• Who should be in charge of defining this survival strategy? What 

would be the application feedback?

19



ULFM MPI API, CONTINUING THROUGH ERRORS
Part rationale, part examples

20



Bye bye, world

• This program will abort (default error handler)
• What do we need to do to make if fault tolerant? 

21

19 int main(int argc, char *argv[])
20 {
21 int rank, size;
22 
23 MPI_Init(NULL, NULL);
24 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
25 MPI_Comm_size(MPI_COMM_WORLD, &size);
26 
27 if( rank == (size-1) ) raise(SIGKILL);
28 MPI_Barrier(MPI_COMM_WORLD);
29 printf("Rank %d / %d\n", rank, size);
30 
31 MPI_Finalize();
32 }

Injecting a failure 
at the highest 
rank processor

See 00.noft.c

See q01.err_returns.c



Bye bye, world, but orderly

• Using only MPI-2 at the moment
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19 int main(int argc, char *argv[])
20 {
21 int rank, size, rc, len;
22 char errstr[MPI_MAX_ERROR_STRING];
23 
24 MPI_Init(NULL, NULL);
25 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
26 MPI_Comm_size(MPI_COMM_WORLD, &size);
27 
28 MPI_Comm_set_errhandler(MPI_COMM_WORLD,
29 MPI_ERRORS_RETURN);
30 
31 if( rank == (size-1) ) raise(SIGKILL);
32 rc = MPI_Barrier(MPI_COMM_WORLD);                                                                                           
33 MPI_Error_string(rc, errstr, &len);
34 printf("Rank %d / %d: Notified of error %s. Stayin' alive!\n",
35 rank, size, errstr);
36 
37 MPI_Finalize();
38 }

We can get a 
nice error string

See 01.err_returns.c

Errors are not 
fatal anymore: 
return an error 
code instead

collect the error code in rc

All non-faulty 
processes 

survive and print 
the success or 

error, as 
reported from 
MPI_Barrier



Handling errors separately

• Still using only MPI-2
23

19 static void verbose_errhandler(MPI_Comm* comm, int* err, ...) {
…
21 char errstr[MPI_MAX_ERROR_STRING];
…
26 MPI_Error_string( *err, errstr, &len );
27 printf("Rank %d / %d: Notified of error %s\n",
28 rank, size, errstr);
29 }
30 
31 int main(int argc, char *argv[]) {
…
33 MPI_Errhandler errh;
…
39 MPI_Comm_create_errhandler(verbose_errhandler,
40 &errh);
41 MPI_Comm_set_errhandler(MPI_COMM_WORLD,
42 errh);
…
45 MPI_Barrier(MPI_COMM_WORLD);
46 printf("Rank %d / %d: Stayin' alive!\n", rank, size);

See q02.err_handler.c

We can pack all error 
management in an 

“error handler”

Create an “errhandler” 
object from the C 

function, and attach it 
to the communicator

No need to collect rc anymore J



What caused the error?

• ULFM defines new error classes: 
• After these errors, MPI can be repaired

• All other errors still have MPI-2 
semantic
• May or may not be able to continue after it has 

been reported

24

13 #include <mpi.h>
14 #include <mpi-ext.h>
…
19 static void verbose_errhandler(MPI_Comm* pcomm, int* perr, ...) {
20 MPI_Comm comm = *pcomm;
21 int err = *perr;
…
23 int …, eclass;                                                                                         
…
27 MPI_Error_class(err, &eclass);
28 if( MPIX_ERR_PROC_FAILED != eclass ) {
29 MPI_Abort(comm, err);
30 }
…

See 02.err_hander.c

This is an “MPI error 
code”

Convert the “error code” 
to an “MPI error class”

MPIX_ERR_PROC_FAILED: a process 
failed, we can deal with it.

Something else: ULFM MPI return the error 
but it still may be impossible to recover; in 

this app, we abort when that happens

ULFM is an extension to the MPI standard



Integration with existing mechanisms

• New error codes to deal with failures
• MPI_ERROR_PROC_FAILED: report that the operation discovered a newly dead process. Returned 

from all blocking function, and all completion functions.
• MPI_ERROR_PROC_FAILED_PENDING: report that a non-blocking MPI_ANY_SOURCE potential 

sender has been discovered dead.
• MPI_ERROR_REVOKED: a communicator has been declared improper for further communications. 

All future communications on this communicator will raise the same error code, with the exception of 
a handful of recovery functions

• Is that all?
• Matching order (MPI_ANY_SOURCE), collective communications

25



Who caused the error?

• Discovery of failures is local (different processes may know of 
different failures)
• MPI_COMM_FAILURE_ACK(comm)
• This local operation gives the users a way to acknowledge all locally notified failures on comm. After the 

call, unmatched MPI_ANY_SOURCE receive operations proceed without further raising 
MPI_ERR_PROC_FAILED_PENDING due to those acknowledged failures. 

• MPI_COMM_FAILURE_GET_ACKED(comm, &grp)
• This local operation returns the group grp of processes, from the communicator comm, that have been 

locally acknowledged as failed by preceding calls to MPI_COMM_FAILURE_ACK. 

• Employing the combination ack/get_acked, a process can obtain 
the list of all failed ranks (as seen from its local perspective)

26



MPI_Comm_failure_get_acked

• Local operation returning the group of failed processes in the 
associated communicator that have been locally acknowledged
• Beware: All calls to MPI_Comm_failure_get_acked between a 

set of MPI_Comm_failure_ack return the same set of failed 
processes

27



Who caused the error

28

…
19 static void verbose_errhandler(MPI_Comm* pcomm, int* perr, 
...) {
20 MPI_Comm comm = *pcomm;
…
35 MPIX_Comm_failure_ack(comm);
36 MPIX_Comm_failure_get_acked(comm, &group_f);
37 MPI_Group_size(group_f, &nf);
38 MPI_Error_string(err, errstr, &len);
39 printf("Rank %d / %d: Notified of error %s. %d found
dead: { ",
40 rank, size, errstr, nf);
41 
42     ranks_gf = (int*)malloc(nf * sizeof(int));
43     ranks_gc = (int*)malloc(nf * sizeof(int));
44     MPI_Comm_group(comm, &group_c);
45     for(i = 0; i < nf; i++)
46         ranks_gf[i] = i;                                                                                                  
47     MPI_Group_translate_ranks(group_f, nf, ranks_gf,
48                               group_c, ranks_gc);
49     for(i = 0; i < nf; i++)
50         printf("%d ", ranks_gc[i]);
51     printf("}\n");
52 }

Still in 02.err_handler.c

Move the “mark” in the 
known failures list

Get the group of marked 
failed processes



Who caused the error

29

…
19 static void verbose_errhandler(MPI_Comm* pcomm, int* perr, 
...) {
20 MPI_Comm comm = *pcomm;
…
35 MPIX_Comm_failure_ack(comm);
36 MPIX_Comm_failure_get_acked(comm, &group_f);
37 MPI_Group_size(group_f, &nf);
38 MPI_Error_string(err, errstr, &len);
39 printf("Rank %d / %d: Notified of error %s. %d found
dead: { ",
40 rank, size, errstr, nf);
41 
42 ranks_gf = (int*)malloc(nf * sizeof(int));
43 ranks_gc = (int*)malloc(nf * sizeof(int));
44 MPI_Comm_group(comm, &group_c);
45 for(i = 0; i < nf; i++)
46 ranks_gf[i] = i;                                                                                                        
47 MPI_Group_translate_ranks(group_f, nf, ranks_gf,
48 group_c, ranks_gc);
49 for(i = 0; i < nf; i++)
50 printf("%d ", ranks_gc[i]);
51 printf("}\n");
52 }

Still in 02.err_handler.c

Move the “mark” in the 
known failures list

Get the group of marked 
failed processes

Translate the failed group 
member’s ranks, in comm



Insulation from irrelevant failures

What happens?

30

25 double myvalue, hisvalue=NAN;
…
36 myvalue = rank/(double)size;
37 if( 0 == rank%2 )
38 peer = ((rank+1)<size)? rank+1: MPI_PROC_NULL;
39 else
40 peer = rank-1;
41 
42 if( rank == (size/2) ) raise(SIGKILL);
43 /* exchange a value between a pair of two consecutive
44 * odd and even ranks; not communicating with anybody
45 * else. */
46 MPI_Sendrecv(&myvalue, 1, MPI_DOUBLE, peer, 1,
47 &hisvalue, 1, MPI_DOUBLE, peer, 1,
48 MPI_COMM_WORLD, MPI_STATUS_IGNORE);
49 
50 if( peer != MPI_PROC_NULL)
51 printf("Rank %d / %d: value from %d is %g\n",
52 rank, size, peer, hisvalue);

See 03.undisturbed.c

0 1

2 3

4 5

6 7

sendrecv

8 9



Continuing through errors
• Error notifications do not break 

MPI
• App can continue to communicate on the 

communicator
• More errors may be raised if the op cannot 

complete (typically, most collective ops are 
expected to fail), but p2p between non-failed 
processes works

• In a Master-Worker example, we 
can continue w/o recovery!
• Master sees failed worker
• Resubmit the lost work unit onto another worker
• Quietly continues

• Same story with Stencil pattern!
• Exchange with next neighbor in the same direction 

instead
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Send (W1,T1)
Submit T1
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Insulation from irrelevant failures

Can you guess what happens? 

32

25 double myvalue, hisvalue=NAN;
…
36 myvalue = rank/(double)size;
37 if( 0 == rank%2 )
38 peer = ((rank+1)<size)? rank+1: MPI_PROC_NULL;
39 else
40 peer = rank-1;
41 
42 if( rank == (size/2) ) raise(SIGKILL);
43 /* exchange a value between a pair of two consecutive
44 * odd and even ranks; not communicating with anybody
45 * else. */
46 MPI_Sendrecv(&myvalue, 1, MPI_DOUBLE, peer, 1,
47 &hisvalue, 1, MPI_DOUBLE, peer, 1,
48 MPI_COMM_WORLD, MPI_STATUS_IGNORE);
49 
50 if( peer != MPI_PROC_NULL)
51 printf("Rank %d / %d: value from %d is %g\n",
52 rank, size, peer, hisvalue);

See 03.undisturbed.c

0 1

2 3

4 5

6 7

sendrecvbash$ $ULFM_PREFIX/bin/mpirun -np 10 03.undisturbed 
Rank 0 / 10: value from 1 is 0.1
Rank 1 / 10: value from 0 is 0
Rank 3 / 10: value from 2 is 0.2
Rank 2 / 10: value from 3 is 0.3
Rank 6 / 10: value from 7 is 0.7
Rank 7 / 10: value from 6 is 0.6
Rank 9 / 10: value from 8 is 0.8
Rank 8 / 10: value from 9 is 0.9
Rank 4 / 10: Notified of error MPI_ERR_PROC_FAILED: Process Failure. 1 found dead: { 5 }
Rank 4 / 10: value from 5 is nan

Sendrecv failed at rank 
4 (5 is dead)

Value not updated!

Sendrecv between pairs of 
live processes complete w/o 
error. Can post more, it will 

work too!



Dealing with MPI_ANY_SOURCE

33

36 if( 0 != rank ) {
37 MPI_Send(&rank, 1, MPI_INT, 0, 1, MPI_COMM_WORLD);
38 }
39 else {
40 printf("Recv(ANY) test\n");
41 for(i = 1; i < size-nf; ) {
42 rc = MPI_Recv(&unused, 1, MPI_INT, MPI_ANY_SOURCE, 1, 
MPI_COMM_WORLD, &status);
43 if( MPI_SUCCESS == rc ) {
44 printf("Received from %d during recv %d\n", unused, i);
45 i++;
46 }
47 else {

See 08.err_any_source.c

Assume a process dies before 
sending the message

No specified source

0

1 2 3 4 5 6 7

????



Dealing with MPI_ANY_SOURCE

• If the recv uses ANY_SOURCE:
• Any failure in the comm is potentially a failure of the 

matching sender!
• The recv MUST be interrupted
• Interrupting non-blocking ANY_SOURCE could change 

matching order…

• New error code MPIX_ERR_PROC_FAILED_PENDING: 
the operation is interrupted by a process failure, but is 
still pending

• If the application knows the receive is safe, and the 
matching order respected, the pending operation can 
be waited upon (otherwise MPI_Cancel)

34

36 if( 0 != rank ) {
37 MPI_Send(&rank, 1, MPI_INT, 0, 1, MPI_COMM_WORLD);
38 }
39 else {
40 printf("Recv(ANY) test\n");
41 for(i = 1; i < size-nf; ) {
42 rc = MPI_Recv(&unused, 1, MPI_INT, MPI_ANY_SOURCE, 1, 
MPI_COMM_WORLD, &status);
43 if( MPI_SUCCESS == rc ) {
44 printf("Received from %d during recv %d\n", unused, i);
45 i++;
46 }
47 else {

See 08.err_any_source.c

MPIX_ERR_PROC_FAILED_PENDING on 
every node posting an ANY_SOURCE. 

Assume a process dies before 
sending the message

No specified source, the 
failure detection is 

homogeneous



MPI_Comm_failure_ack

• Local operations that acknowledge all locally notified failures
• Updates the group returned by MPI_COMM_FAILURE_GET_ACKED

• Unmatched MPI_ANY_SOURCE that would have raised 
MPI_ERR_PROC_FAILED or MPI_ERR_PROC_FAILED_PENDING 
proceed without further exceptions regarding the acknowledged 
failures.
• MPI_COMM_AGREE do not raise MPI_ERR_PROC_FAILED due to 

acknowledged failures
• No impact on other MPI calls especially not on collective communications

35



STABILIZING AFTER AN ERROR
Lets keep it neat and tidy

36



Regrouping after error

• Run q04.if_error with 5 processes. What happens?
• How can it be fixed ?

37

56 /* Assign left and right neighbors to be rank-1 and rank+1
57 * in a ring modulo np */
58 left = (np+rank-1)%np;
59 right  = (np+rank+1)%np;
60 
61 for( i = 0; i < 10; i++ ) {
…
70 /* At every iteration, a process receives from it's 'left' neighbor
71 * and sends to 'right' neighbor (ring fashion, modulo np)
72 * ... -> 0 -> 1 -> 2 -> ... -> np-1 -> 0 ... */
73 rc = MPI_Sendrecv( sarray, COUNT, MPI_DOUBLE, right, 0,
74 rarray, COUNT, MPI_DOUBLE, left , 0,
75 fcomm, MPI_STATUS_IGNORE );
…
80 if( rc != MPI_SUCCESS ) {
81 /* ???>>> Hu ho, this program has a problem here */
82 goto cleanup;
83 }

See q04.if_error.c



Regrouping after error

• P1 fails
• P2 raises an error and stop Plan A to enter application recovery 

Plan B
• but P3..Pn are stuck in their posted recv
• We need a way to “unstuck” them. Enter Revoke J
• P3..Pn join P2 in the recovery

38

2. NON-UNIFORM FAILURE KNOWLEDGE
This section discusses the rationale behind the proposed

design that justifies the introduction of the Revoke opera-
tion. We take the perspective of the performance conscious
MPI implementor, and analyze the unacceptable overhead
resulting from requiring uniformity of failure knowledge. We
then present the issues that arise when this requirement is
dropped, and the modus-operandi of the Revoke interface to
resolve them. The proposed design does indeed permit min-
imal overhead on failure free performance, as has been illus-
trated by the implementation presented in [7]. A more gen-
eral presentation of the ulfm interface can be found in [6].

2.1 Failure Detection
Failure detection has proven to be a complex but crucial

area of fault tolerance research. Although in the most ad-
verse hypothesis of a completely asynchronous system, fail-
ures (even simple processes crash, as we consider here) are
intractable in theory [17], the existence of an appropriate
failure detector permits resolving most of the theoretical
impossibilities [11]. However, requiring complete awareness
(thus active monitoring) of failures of every process by every
other process would generate an immense amount of system
noise (from heartbeat messages injected into the network
and the respective treatments on the computing resources
to respond to them), and it is known that MPI communi-
cation performance is very sensitive to system noise [23].
Fortunately, processes that are not trying to communicate
with a dead process do not need, a priori, to be aware of
its failure, as their operations are with alive processors and
therefore deadlock-free. As a consequence, failure detection
in ulfm only requires to detect failures of processes that are
direct partners in a communication operation.

2.2 Local versus Uniform Error Reporting
Another natural preconception is to consider that detec-

tion of failures at any rank results in MPI automatically
altering the state of all communication objects in which the
associated process appears (i.e. communicators, windows,
etc.). In such a model, it is understood that the failure
“damages”the communication object and renders it inappro-
priate for further communications. However, a complication
is hidden in such an approach: the state of MPI communi-
cation objects is the aggregate state of individual views by
each process of the distributed system. As failure aware-
ness is not expected to be global, the implementation would
then require internal and asynchronous propagation of fail-
ure detection, again, a process that is prone to introduce jit-
ter. Furthermore, some recovery patterns (typical in PDE
solvers [1], as an example) do not require advanced, nor
collective, corrective actions and can continue between non-
failed processes on the unmodified communication object.
As a consequence, ulfm never automatically modifies the
state of communication objects. Even if it contains failed
processes, a communicator remains a valid communication
object, until explicitly required. Therefore, error reporting
is not intended to indicate that a process failed, but to indi-
cate that an operation cannot deliver the normal semantic
at the local rank: when a failure happened, but an MPI
operation can proceed without disruption, it completes nor-
mally; when the failed process is supposed to participate in
the result of the operation, it is obviously impossible for the
operation to succeed, and an appropriate error is returned.

P1

P2

P3

Pn
Recv(Pn-1)

Recv(P1)

Recv(P[3:n]): Revoked

Recv(P1): Failed
P2 calls Revoke

Plan A Plan B

Recovery

Figure 1: The transitive communication pattern in
plan A must be interrupted before any process can
switch to the recovery communication pattern plan
B. By revoking the communication context, P2 en-
sures that all possibly unmatched operations in plan
A, which could provoke deadlocks, are interrupted.

Errors can then be captured by the application by setting
the appropriate MPI_ERRHANDLER.
An additional criterion to consider is that some MPI op-

erations are collective, or have a matching call at some other
process (e.g. Send/Recv). Convenience would call for the
same error be returned uniformly at all ranks that partici-
pated in the communication. This would easily permit track-
ing the global progress of the application (and then infer a
consistent, synchronized recovery point). However, the per-
formance consequences are dire, as it requires that every
communication concludes with an agreement operation be-
tween its participants in order to determine the global suc-
cess or failure of the communication, as viewed by each pro-
cess. Such an operation cannot be possibly achieved in less
than the cost of an AllReduce, even without accounting for
the cost of actually tolerating failures during the operation,
and would thus impose an enormous overhead on communi-
cation. In regard to the goal of maintaining an unchanged
level of performance, it is clearly unacceptable to double,
at best, the cost of all latency bound communication opera-
tions, especially when no failure has occurred. Furthermore,
it is already customary for MPI operations to have a local
only semantic, for example, when an MPI_REDUCE completes
at a non-root process, there is no guarantee that the root
has received the result of the collective operation yet. The
semantic only specifies that when the operation completes,
the local input bu↵er can be reused.
As a consequence, in ulfm, the reporting of errors has a lo-

cal operation semantic: the local completion status (in error,
or successfully) cannot be used to assume if the operation
has failed or succeeded at other ranks. In many applications,
this uncertainty is manageable, because the communication
pattern is simple enough. In some cases, however, the com-
munication pattern does not allow such flexibility, and the
application thereby requires an operation to resolve that un-
certainty, as described below.

2.3 Dependencies Between Processes
If the communication pattern is complex, the occurrence

of failures has the potential to deeply disturb the application
and prevent an e↵ective recovery from being implemented.
Consider the example in Figure 1: as long as no failure oc-
curs, the processes are communicating in a point-to-point
pattern (called plan A). Process Pk is waiting to receive a
message from Pk�1, then sends a message to Pk+1 (when



MPI_Comm_revoke

• Communicator level failure propagation
• The revocation of a communicator completes all pending local 

operations
• A communicator is revoked either after a local MPI_Comm_revoke or any MPI call raise an exception of 

class MPI_ERR_REVOKED

• Unlike any other concept in MPI it is not a collective call but has a 
collective scope
• Once a communicator has been revoked all non-local calls are 

considered local and must complete by raising MPI_ERR_REVOKED
• Notable exceptions: the recovery functions (agreement and shrink)
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Regrouping for Plan B

40

77 if( rc != MPI_SUCCESS ) {
78 /* Ok, some error occurred, force other processes to exit the loop
79 * because when I am leaving, I will not match the sendrecv, and
80 * that would cause them to deadlock */
81 MPIX_Comm_revoke( fcomm );
82 goto cleanup;
83 } See 04.if_error.c

2. NON-UNIFORM FAILURE KNOWLEDGE
This section discusses the rationale behind the proposed

design that justifies the introduction of the Revoke opera-
tion. We take the perspective of the performance conscious
MPI implementor, and analyze the unacceptable overhead
resulting from requiring uniformity of failure knowledge. We
then present the issues that arise when this requirement is
dropped, and the modus-operandi of the Revoke interface to
resolve them. The proposed design does indeed permit min-
imal overhead on failure free performance, as has been illus-
trated by the implementation presented in [7]. A more gen-
eral presentation of the ulfm interface can be found in [6].

2.1 Failure Detection
Failure detection has proven to be a complex but crucial

area of fault tolerance research. Although in the most ad-
verse hypothesis of a completely asynchronous system, fail-
ures (even simple processes crash, as we consider here) are
intractable in theory [17], the existence of an appropriate
failure detector permits resolving most of the theoretical
impossibilities [11]. However, requiring complete awareness
(thus active monitoring) of failures of every process by every
other process would generate an immense amount of system
noise (from heartbeat messages injected into the network
and the respective treatments on the computing resources
to respond to them), and it is known that MPI communi-
cation performance is very sensitive to system noise [23].
Fortunately, processes that are not trying to communicate
with a dead process do not need, a priori, to be aware of
its failure, as their operations are with alive processors and
therefore deadlock-free. As a consequence, failure detection
in ulfm only requires to detect failures of processes that are
direct partners in a communication operation.

2.2 Local versus Uniform Error Reporting
Another natural preconception is to consider that detec-

tion of failures at any rank results in MPI automatically
altering the state of all communication objects in which the
associated process appears (i.e. communicators, windows,
etc.). In such a model, it is understood that the failure
“damages”the communication object and renders it inappro-
priate for further communications. However, a complication
is hidden in such an approach: the state of MPI communi-
cation objects is the aggregate state of individual views by
each process of the distributed system. As failure aware-
ness is not expected to be global, the implementation would
then require internal and asynchronous propagation of fail-
ure detection, again, a process that is prone to introduce jit-
ter. Furthermore, some recovery patterns (typical in PDE
solvers [1], as an example) do not require advanced, nor
collective, corrective actions and can continue between non-
failed processes on the unmodified communication object.
As a consequence, ulfm never automatically modifies the
state of communication objects. Even if it contains failed
processes, a communicator remains a valid communication
object, until explicitly required. Therefore, error reporting
is not intended to indicate that a process failed, but to indi-
cate that an operation cannot deliver the normal semantic
at the local rank: when a failure happened, but an MPI
operation can proceed without disruption, it completes nor-
mally; when the failed process is supposed to participate in
the result of the operation, it is obviously impossible for the
operation to succeed, and an appropriate error is returned.
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Figure 1: The transitive communication pattern in
plan A must be interrupted before any process can
switch to the recovery communication pattern plan
B. By revoking the communication context, P2 en-
sures that all possibly unmatched operations in plan
A, which could provoke deadlocks, are interrupted.

Errors can then be captured by the application by setting
the appropriate MPI_ERRHANDLER.
An additional criterion to consider is that some MPI op-

erations are collective, or have a matching call at some other
process (e.g. Send/Recv). Convenience would call for the
same error be returned uniformly at all ranks that partici-
pated in the communication. This would easily permit track-
ing the global progress of the application (and then infer a
consistent, synchronized recovery point). However, the per-
formance consequences are dire, as it requires that every
communication concludes with an agreement operation be-
tween its participants in order to determine the global suc-
cess or failure of the communication, as viewed by each pro-
cess. Such an operation cannot be possibly achieved in less
than the cost of an AllReduce, even without accounting for
the cost of actually tolerating failures during the operation,
and would thus impose an enormous overhead on communi-
cation. In regard to the goal of maintaining an unchanged
level of performance, it is clearly unacceptable to double,
at best, the cost of all latency bound communication opera-
tions, especially when no failure has occurred. Furthermore,
it is already customary for MPI operations to have a local
only semantic, for example, when an MPI_REDUCE completes
at a non-root process, there is no guarantee that the root
has received the result of the collective operation yet. The
semantic only specifies that when the operation completes,
the local input bu↵er can be reused.
As a consequence, in ulfm, the reporting of errors has a lo-

cal operation semantic: the local completion status (in error,
or successfully) cannot be used to assume if the operation
has failed or succeeded at other ranks. In many applications,
this uncertainty is manageable, because the communication
pattern is simple enough. In some cases, however, the com-
munication pattern does not allow such flexibility, and the
application thereby requires an operation to resolve that un-
certainty, as described below.

2.3 Dependencies Between Processes
If the communication pattern is complex, the occurrence

of failures has the potential to deeply disturb the application
and prevent an e↵ective recovery from being implemented.
Consider the example in Figure 1: as long as no failure oc-
curs, the processes are communicating in a point-to-point
pattern (called plan A). Process Pk is waiting to receive a
message from Pk�1, then sends a message to Pk+1 (when



About non-uniform error reporting

• What processes are going to report an error ?
• Is any process going to display the message 

line 41 ?
• What if we do an Allreduce instead?

41

35 value = rank/(double)size;
36 
37 if( rank == (size/4) ) raise(SIGKILL);
38 MPI_Bcast(&value, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
39 
40 if( value != 0.0 ) {
41 printf("Rank %d / %d: value from %d is wrong: %g\n",
42 rank, size, 0, value);
43 }

See 05.err_coll.c
Bcast from 0 is 
disrupted by a 

failure



About non-uniform error reporting

• Are all processes going to report an error ?
• Is any process going to display the message line 

41 ?

42

35 value = rank/(double)size;
36 
37 if( rank == (size/4) ) raise(SIGKILL);
38 MPI_Bcast(&value, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
39 
40 if( value != 0.0 ) {
41 printf("Rank %d / %d: value from %d is wrong: %g\n",
42 rank, size, 0, value);
43 }

See 05.err_coll.c

Bcast from 0 is 
disrupted by a 

failure

bash$ $ULFM_PREFIX/bin/mpirun -np 5 05.err_coll -v 
Rank 3 / 5: Notified of error MPI_ERR_PROC_FAILED: Process Failure. 1 found dead: 
{ 1 }
Rank 3 / 5: value from 0 is wrong: 0.6

0 is the root, it 
sends to 1, but 
doesn’t see the 

failure of 1

MPI_Bcast internally uses 
a binomial tree topology

3 (a leaf) was supposed to 
receive from 1…

Bcast failed at rank 3, 
value has not been 

updated!



Issue with communicator creation

• MPI_Comm_dup (for example) is a collective
• Like MPI_Bcast, it may raise an error at some rank and not others
• When rank 0 sees MPI_ERR_PROC_FAILED, newcomm is not created correctly!
• At the same time, rank 2 creates newcomm correctly
• If rank 2 posts an operation with 0, this operation cannot complete (0 cannot post the 

matching send, it  doesn’t have the newcomm)
• Deadlock!

43

rc=F,newcomm=???

rc=S
rc=S

0

1

2 Recv(src=0, newcomm)

3

MPI_Comm_dup w/failure at rank 1 during the operation



Safe communicator creation

44

20 /* Performs a comm_dup, returns uniformly MPIX_ERR_PROC_FAILED or
21 * MPI_SUCCESS */
22 int ft_comm_dup(MPI_Comm comm, MPI_Comm *newcomm) {
23 int rc;
24 int flag;
25 
26 rc = MPI_Comm_dup(comm, newcomm);
27 flag = (MPI_SUCCESS==rc);
28     MPIX_Comm_agree(comm, &flag);
29 if( !flag ) {
30 if( rc == MPI_SUCCESS ) {
31 MPI_Comm_free(newcomm);
32 rc = MPIX_ERR_PROC_FAILED;
33 }
34 }
35 return rc;
36 }

See q06.err_comm_dup.c

We need the flag to 
have a global 

meaning



MPI_Comm_agree

• Perform a consensus between all living processes in the 
associated communicator and consistently return a value and 
an error code to all living processes
• Upon completion all living processes agree to set the output 

integer value to a bitwise AND operation over all the contributed 
values
• Also perform a consensus on the set of known failed processes (!)
• Failures non acknowledged by all participants keep raising

MPI_ERR_PROC_FAILED

45



Safe communicator creation

• Solution: MPI_Comm_agree
• After ft_comm_dup,  either all procs have created newcomm, or all procs

have returned MPI_ERR_PROC_FAILED
• Global state is consistent in all cases

46

20 /* Performs a comm_dup, returns uniformly MPIX_ERR_PROC_FAILED or
21 * MPI_SUCCESS */
22 int ft_comm_dup(MPI_Comm comm, MPI_Comm *newcomm) {
23 int rc;
24 int flag;
25 
26 rc = MPI_Comm_dup(comm, newcomm);
27 flag = (MPI_SUCCESS==rc);
28 MPIX_Comm_agree(comm, &flag);
29 if( !flag ) {
30 if( rc == MPI_SUCCESS ) {
31 MPI_Comm_free(newcomm);
32 rc = MPIX_ERR_PROC_FAILED;
33 }
34 }
35 return rc;
36 }

See 06.err_comm_dup.c



Benefits of safety separation

47

20 /* Create two communicators, representing a PxP 2D grid of
21 * the processes. Either return MPIX_ERR_PROC_FAILED at all ranks,
22 * then no communicator has been created, or MPI_SUCCESS and all 
23  * communicators have been created, at all ranks. */
24 int ft_comm_grid2d(MPI_Comm comm, int p, MPI_Comm *rowcomm, MPI_Comm *colcomm) 
{
…
30 rc1 = MPI_Comm_split(comm, rank%p, rank, rowcomm);
31 rc2 = MPI_Comm_split(comm, rank/p, rank, colcomm);
32 flag = (MPI_SUCCESS==rc1) && (MPI_SUCCESS==rc2);
33 MPIX_Comm_agree(comm, &flag);
34 if( !flag ) {
35 if( rc1 == MPI_SUCCESS ) {
36 MPI_Comm_free(rowcomm);
37 }
38 if( rc2 == MPI_SUCCESS ) {
39 MPI_Comm_free(colcomm);
40 }
41 return MPIX_ERR_PROC_FAILED;
42 }
43 return MPI_SUCCESS;
44 }

See 07.err_comm_grid2d

• PxP 2D process grid
• A process appears in two 

communicators
• A row communicator
• A column communicator

• We Agree only once
• Better amortization of the cost 

over multiple operations



FIXING THE WORLD
Can we fix it? Yes we can!

49



Full capacity recovery

• After a Revoke, our original comm is unusable. Can we 
just create a new one ?
• We can Shrink: that create a new comm, but smaller
• Can be used to do collective and p2p operations, fully functional

• Some application need to restore a world the same size
• And on top of it, they want the same rank mapping

50
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MPI_Comm_shrink

• Creates a new communicator by excluding all known failed 
processes from the parent communicator
• It completes an agreement on the parent communicator
• Work on revoked communicators as a mean to create safe, globally 

consistent sub-communicators
• Absorbs new failures, it is not allowed to return

MPI_ERR_PROC_FAILED or MPI_ERR_REVOKED

51



Respawning the deads

• Avoid the cost of having 
idling spares
• We use MPI_Comm_spawn to launch 

new processes
• We insert them with the right rank in a 

new “world”
52

143 int main( int argc, char* argv[] ) {
…
157 /* Am I a spare ? */
158 MPI_Comm_get_parent( &world );
159 if( MPI_COMM_NULL == world ) {
160 /* First run: Let's create an initial world,
161 * a copy of MPI_COMM_WORLD */
162 MPI_Comm_dup( MPI_COMM_WORLD, &world );
…
167 } else {
168 /* I am a spare, lets get the repaired world */
169 MPIX_Comm_replace( MPI_COMM_NULL, &world );
…
174 goto joinwork;
175 }

MPIX_Comm_replace( comm,*newcomm)

See 10.respawn
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Summary of new functions
• MPI_Comm_failure_ack(comm)
• Resumes matching for MPI_ANY_SOURCE 

• MPI_Comm_failure_get_acked(comm, &group)
• Returns to the user the group of processes acknowledged to have failed 

• MPI_Comm_revoke(comm)
– Non-collective collective, interrupts all operations on comm

(future or active, at all ranks) by raising MPI_ERR_REVOKED 

• MPI_Comm_shrink(comm, &newcomm) 
– Collective, creates a new communicator without failed 

processes (identical at all ranks) 
• MPI_Comm_agree(comm, &mask)

– Collective, agrees on the AND value on binary mask, 
ignoring failed processes (reliable AllReduce), and the 
return core

N
otification

Propagation
Recovery



Transaction-like approaches
• TRY_BLOCK setup the 

transaction, by setting a 
setjmp point and the main if

• CATCH_BLOCK complete the if 
from the TRY_BLOCK and 
implement the agreement 
about the success of the work 
completion

• END_BLOCK close the code 
block started by the 
TRY_BLOCK

• RAISE revoke the 
communicator and if 
necessary (if not raised from 
the agreement) longjmp at the 
beginning of the TRY_BLOCK 
catching the if

54

#define TRY_BLOCK(COMM, EXCEPTION) \
do {                               \
int __flag = 0xffffffff; \
__stack_pos++; \
EXCEPTION = setjmp(&stack_jmp_buf[__stack_pos]);\
__flag &= ~EXCEPTION;            \
if( 0 == EXCEPTION ) {

#define CATCH_BLOCK(COMM) \
__stack_pos--; \
__stack_in_agree = 1;  /* prevent longjmp */ \
MPIX_Comm_agree(COMM, &__flag); \
__stack_in_agree = 0; /* enable longjmp */ \

} \
if( 0xffffffff != __flag ) {

#define END_BLOCK()                \
} } while (0);

#define RAISE(COMM, EXCEPTION) \
MPIX_Comm_revoke(COMM); \
assert(0 != (EXCEPTION)); \
if(!__stack_in_agree ) \
longjmp( stack_jmp_buf[__stack_pos],

(EXCEPTION) ); /* escape */



Transaction-like approaches
• Skeleton for a 2 level 

transaction with 
checkpoint approach
• Local checkpoint can be used 

to handle soft errors
• Other types of checkpoint can 

be used to handle hard errors
• No need for global checkpoint, 

only save what will be modified 
during the transaction

• Generic scheme that 
can work at any 
depth

55

/* save data1 to be used in the code below */
transaction1:
TRY_BLOCK(MPI_COMM_WORLD, exception) {

/* do some extremely useful work */

/* save data2 to be used in the code 
below */
transaction2:

TRY_BLOCK(newcomm, exception) {

/* do more extremely useful work */

} CATCH_BLOCK(newcomm) {
/* restore data2 for transaction 2 */
goto transaction2;

} END_BLOCK()

} CATCH_BLOCK(MPI_COMM_WORLD) {
/* restore data1 for transaction 1 */
goto transaction1;

} END_BLOCK()

Transaction 2

Transaction 1



Transaction-like approaches
• A small example doing a simple 

barrier
• We manually kill a process by 

brutally calling exit
• What is the correct or the 

expected output?

56

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

TRY_BLOCK(MPI_COMM_WORLD, exception) {

int rank, size;

MPI_Comm_dup(MPI_COMM_WORLD, &newcomm);
MPI_Comm_rank(newcomm, &rank);
MPI_Comm_size(newcomm, &size);

TRY_BLOCK(newcomm, exception) {

if( rank == (size-1) ) exit(0);
rc = MPI_Barrier(newcomm);

} CATCH_BLOCK(newcomm) {
} END_BLOCK()

} CATCH_BLOCK(MPI_COMM_WORLD) {
} END_BLOCK()

Transaction 2

Transaction 1

See 13.transactions.c



2D Heat Propagation (Laplace eq.)

• The root of many types of scientific 
challenges
• The implementation used here is however trivial, and only serve 

teaching purposes

• We imagine a NxM points space 
represented as a matrix and distributed 
on a PxQ grid of processes
• Each process has (N/P) x (M/Q) elements
• To facilitate the update each process will surround the part of 

the space she owns with a ghost region, that role is to hold the 
data from the last iteration from the neighbor on the direction
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Heat Sources
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2D Heat Propagation (Laplace eq.)
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P1P0

P2 P3

set error handlers
restart:
recover = setjmp()

build row and column communicators
if recover { get data from buddy

goto local_computation }

do {
exchange data with neighbors

if time for buddy chkpt: save local data on buddy

local_computation:
compute local updates and residual

allreduce the residual with all processes

} until convergence (iterations or residual)

See jacobi/jacobi_cpu_noft.c

1. We need to be able to break the 
iterations and jump out of the loop

2. We need to be able to checkpoint 
the local at regular intervals

3. We need to retrieve the data from 
the neighbors, coordinate about 
the iteration and restart the 
computation
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set error handlers
restart:
recover = setjmp()

build row and column communicators
if recover { get data from buddy

goto local_computation }

do {
exchange data with neighbors

if time for buddy chkpt: save local data on buddy

local_computation:
compute local updates and residual

allreduce the residual with all processes

} until convergence (iterations or residual)

See jacobi/ jacobi_cpu_ckpt_buddy.c

1. We need to be able to break the 
iterations and jump out of the loop

2. We need to be able to checkpoint 
the local at regular intervals

3. We need to retrieve the data from 
the neighbors, coordinate about 
the iteration and restart the 
computation

2D Heat Propagation (Laplace eq.)
P1P0

P2 P3
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set error handlers
restart:
recover = setjmp()

build row and column communicators
if recover { get data from buddy

goto local_computation }

do {
exchange data with neighbors

if time for buddy chkpt: save local data on buddy

local_computation:
compute local updates and residual

allreduce the residual with all processes

} until convergence (iterations or residual)

1. We need to be able to break the 
iterations and jump out of the loop

2. We need to be able to checkpoint 
the local at regular intervals

3. We need to retrieve the data from 
the neighbors, coordinate about 
the iteration and restart the 
computation

2D Heat Propagation (Laplace eq.)
P1P0

P2 P3

See jacobi/ jacobi_cpu_ckpt_buddy.c
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set error handlers
restart:
recover = setjmp()

build row and column communicators
if recover { get data from buddy

goto local_computation }

do {
exchange data with neighbors

if time for buddy chkpt: save local data on buddy

local_computation:
compute local updates and residual

allreduce the residual with all processes

} until convergence (iterations or residual)

1. We need to be able to break the 
iterations and jump out of the loop

2. We need to be able to checkpoint 
the local at regular intervals

3. We need to retrieve the data from 
the neighbors, coordinate about 
the iteration and restart the 
computation

2D Heat Propagation (Laplace eq.)
P1P0

P2 P3

See jacobi/ jacobi_cpu_ckpt_buddy.c
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set error handlers
restart:
recover = setjmp()

build row and column communicators
if recover { get data from buddy

goto local_computation }

do {
exchange data with neighbors

if time for buddy chkpt: save local data on buddy

local_computation:
compute local updates and residual

allreduce the residual with all processes

} until convergence (iterations or residual)

1. We need to be able to break the 
iterations and jump out of the loop

2. We need to be able to checkpoint 
the local at regular intervals

3. We need to retrieve the data from 
the neighbors, coordinate about 
the iteration and restart the 
computation

2D Heat Propagation (Laplace eq.)
P1P0

P2 P3

See jacobi/ jacobi_cpu_ckpt_buddy.c
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set error handlers
restart:
recover = setjmp()

build row and column communicators
if recover { get data from VELOC checkpoint

goto local_computation }

do {
exchange data with neighbors

if time for chkpt: call VELOC to save local

local_computation:
compute local updates and residual

allreduce the residual with all processes

} until convergence (iterations or residual)

1. We need to be able to break the 
iterations and jump out of the loop

2. We need to be able to checkpoint 
the local at regular intervals

3. We need to retrieve the data from 
the neighbors, coordinate about 
the iteration and restart the 
computation

2D Heat Propagation (Laplace eq.)
P1P0

P2 P3

See jacobi/ jacobi_cpu_ckpt_veloc.c



USER’S RECOVERY STORIES
Beyond examples, what people are doing with it
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User Level Failure Mitigation:
User Adoption

• Fortran CoArrays “failed 
images”
uses ULFM-RMA to support 
Fortran TS 18508

• SAP In-memory distributed
database

• PHALANX
• Elastic X10
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Resilient X10 over Fault Tolerant MPI

Sara Hamouda1, Benjamin Herta2, Josh Milthorpe1,2, David Grove2, Olivier Tardieu2

1Australian National University, 2IBM T. J. Watson Research Center

Resilient X10

X10 is an APGAS programming language 

that is designed to provide a simple and 

clean programming model for developing 

scale-out applications.

As supercomputers grow larger, the Mean 

Time Between Failure reduces, and the 

need for writing fault tolerance 

applications becomes more critical.

By applying the HBI principle, Resilient X10 will ensure that statement D executes after Task C  nishes, despite the loss of the 

synchronization construct ( nish) at place p

try{ /*Task A*/

 at (p) { /*Task B*/

  finish { at (q) async { /*Task C*/ } }

 }

} catch(dpe:DeadPlaceException){ /*recovery steps*/}

D;

Place r Place p Place q

Resilient X10 over MPI ULFM

CBA

finish
{@q async C;}Happens Before Invariance 

Principle (HBI): 
Failure of a place should not alter 

the happens before relationship 

between statements at the 

remaining places.

val wordCount = new AtomicInteger();

val refCount = GlobalRef(wordCount);

finish for (p in Place.places()) {

  val files = getFilesForPlace(p); 

  at (p) async { //create task at place p

    val pCount = countWords(files, “ibm”);

    at (refCount.home)

      refCount().addAndGet(pCount);

  }

} print(wordCount);

Resilient X10 [1] allows X10 programs to survive process failures. 

By introducing the Happens Before Invariance Principle, it guarantees the 

correct repair of the global program structure after a failure.

Conclusion: Using a fault tolerant MPI 

implementation (ULFM), resilient X10 applications can 

achieve better performance with the optimized MPI 

communication routines and the support for high 

speed network protocols provided by MPI (e.g. 

Infiniband verbs).

Although MPI is the preferred transport layer for scale-out computing, 

Resilient X10 was initially supported only over sockets.

ULFM (User-Level Failure Mitigation) is the most recent proposed 

specification for fault tolerant MPI [2]. An implementation of ULFM is available 

based on OpenMPI 1.7.

We integrated X10 with ULFM to allow Resilient X10 applications to benefit 

from the scalability and performance of MPI.

References:

[1] D. Cunningham, D. Grove, B. Herta, A. Iyengar, K. Kawachiya, H. Murata, V. Saraswat, M. Takeuchi, and O. Tardieu. "Resilient X10: Efficient failure-aware programming." ACM SIGPLAN 

Notices 49, no. 8 (2014): 67-80.

[2] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. J. Dongarra. An evaluation of user-level failure mitigation support in MPI. Springer Berlin Heidelberg, 2012.

[3] J. Milthorpe, D. Grove, B. Herta, and O. Tardieu. Exploring the APGAS programming model using the LULESH proxy application. In Runtime Systems for Extreme Scale Programming Models 

and Architectures Workshop, SC 2015.

Sample X10 program performing distributed word count

Non Resilient Resilient no failure Resilient with a failure
(3 checkpoints + 1 restore)
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The performance improvement due to using ULFM 

v1.0 for running the LULESH proxy application [3] 

(a shock hydrodynamics stencil based simulation) 

running on 64 processes on 16 nodes with 

problem size 203 per process. The cluster is an 

AMD64 Linux cluster, each node having 16G RAM 

and 2 quad core AMD Opteron 2356 processors.
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Fig. 3. Checkpoint time for different core counts (8.6 MB/core). The numbers
above each test show the aggregated bandwidth (the total checkpoint size over
the average checkpoint time).

MB per node). The bars represent the average among all
checkpoints, all cores, throughout the five repetitions, while
error bars indicate variability (including minimum, maximum,
first, and third quartile). The three different sub-bars show
the three different processes that the checkpoint algorithm
requires. Clearly, the communication cost dominates the ex-
ecution. The lower plot in Figure 2 shows that the checkpoint
time is linearly dependent on data size (for sizes greater than
1 MB/core), as expected.

The overhead caused by each array size strongly influences
the choice of the size to be used in the rest of the experiments
of this paper – 50 grid points per core, which corresponds to
8.58 MB of the yspc array.

Weak scalability. Figure 3 shows how checkpointing scales
to 250k cores as we increase total the number of cores
while achieving similar average checkpoint time, sustaining
a bandwidth of 16.8 TB/s in the test with a higher number of
cores. Again, the checkpoint procedure is dominated mostly
by the transfer cost. As expected, the memcpy time remains
constant throughout all executions, and the garbage collection
cost is negligible.

The lower communication time of the tests with less than
4k cores is due to the configured group size. In small tests it
was set to 16 nodes, while in bigger ones was set to 96 nodes
(the Cray XK7 cabinet size). As the group size is increased,
messages must traverse more Gemini nodes [53] to reach the
destination.

The minimum of each test (the lower point on the error
bars) is in all cases close to the third quartile. Furthermore,
the median (the white line inside the error bar) is below 0.075
in all cases but in the 64k test. These observations indicate that
25% of cores finish the checkpoint process within a reasonably
small time window and half of them take less than 0.075 s,
while others take more time. As this paper is not focused on
the checkpointing process, no further analysis of this behavior
is provided.

Assuming a linear relationship between checkpoint size
and checkpoint writing time in ADIOS, we can extrapolate
a production run’s checkpoint time assuming 8.58 MB/core.
This would be translated to a 90-second checkpoint write

overhead and a 72-second checkpoint read overhead, a 750-
fold increase in the checkpoint time, compared to 0.12 s with
250k ranks obtained with Fenix (Figure 3). Regarding data
recovery time, our implementation only requires the transfer of
the checkpoints to the failed nodes, a process whose overhead
can be expected to be the same as checkpoint time.

Compared to other studies, such as CRUISE [37] (an
extension of SCR [42]), our implementation is slower. This
is mainly due to the fact that we have to send the checkpoint
remotely in order to tolerate entire-node failures, while tests
done in [37] only store checkpoints in local main memory.

D. Validating Optimal Checkpoint Rate

Young’s formula [56], [58] can be used to determine TC ,
the optimal interval between two consecutive checkpoints,
depending on the MTBF of the system (TF ) and the checkpoint
time (TS). The checkpoint time has been determined in Section
V-C. As in the previous weak scalability test, checkpoint size
is 8.58 MB/core, which leads to TS = 0.0748 s in the case
of 2197 cores (Figure 3). For a system with one million
nodes, each with an MTBF of 3 years, the overall system
MTBF will drop to TF = 94.608 seconds. Using second-order
approximation for exponential distribution [56], [58], TC is
expressed as follows:

TC =
√
2TSTF =

√
2 · 0.0748s · 94.608s = 3.76s (2)

As the average S3D iteration time is 1.182 s with 50 grid points
per core (over five executions of a failure- and checkpoint-free
experiment on 2197 cores), TC can be expressed as 3 S3D
iterations rounded due to the fact that checkpoints are triggered
by the application only at the end of iterations. Using the same
procedure as in equation 2, we obtained the optimal number
of iterations between checkpoints for system’ MTBFs of 47
seconds (TC = 2) and 189 seconds (TC = 4).

As suggested in [58], we want to verify the proper usage of
the formula, i.e. the correct parameter settings and the correct
rounding of TC from seconds to application iterations. To do
that, we evaluated the total cost induced by a set of uniformly
distributed, independent failures, for several given checkpoint
rates. Specifically, assuming an MTBF of 94 seconds we used
a Poisson distribution4 to obtain ten random possible failure
timestamps within the 94-second time frame. We obtained
the following timestamps: 12, 19, 24, 32, 41, 51, 61, 70, 78,
91. Next, we had to chose 10 different number of iterations
between consecutive checkpoints. As the formula indicated
frequent checkpoints, we concentrated on the smallest five (1-
5). Also, to have an idea of the cost with lower frequency, we
chose the other five to be disperse (10, 20, 30, 40, 50).

For every checkpoint rate, we evaluated the total overhead
of fault tolerance while injecting a failure to every chosen
failure timestamp. The overheads induced in the resulting 100
experiments, each running 90 iterations, are represented in
Figure 4. To determine which is the interval that offers the
lowest overall overhead, Figure 5 shows the average of the
overheads caused by the ten different failures, on each chosen
checkpoint rate. Within the highlighted tests (2, 3, 4, and 5),
checkpointing every three or four iterations offers the best
overall solution, validating in turn the result from Young’s
formula.

4We used R v 3.0.2, rpois() with a seed of 10, λ = 10.

901

(a) failure-free (b) few failures (c) many failures

Figure 5. Results of the FT-MLMC implementation for three different failure scenarios.

In Fig. 5 we show three different results, the mean of the density ⇢ at t = 0.06s,
obtained by FT-MLMC. The result in Fig. 5(a) is computed failure-free. In Fig. 5(b) a
result is shown where 3 out of 46 processes where killed. Figure 5(c) shows the result of
a FT-MLMC run where 9 out of 46 processes where killed, among them both processes
dealing with levels 2, such that all samples of this level are missing. The deterioration of
the result is obvious.

In Fig. 6 several quantities of the FT-MLMC method for different MTBFs are pre-
sented. They are discussed in the next section. Figure 6(a) presents two measurements
for the “intermediate save” strategy. (The results for the “late save” strategy are similar.)
First, we show the percentage of processes failed during the computation. Second, the “at
least a failure” probability is shown which measures the fraction of FT-MLMC runs that
experience at least one failure. (All other FT-MLMC runs are failure-free.) Remember
that standard MPI crashes if a failure occurs.

The measurement of the FT-MLMC error versus MTBF is shown in Fig. 6(b). The
error of the failure-free ALSVID-UQ is shown at MTBF = 2 ·104 s, where the fault
tolerant strategies (“intermediate save” and “late save”) are of the same quality. For
MTBF > 200 s the error remains rather constant. This can be seen for MTBF < 200 s
where the error slightly grows. It explodes at MTBF < 40 s for the “late save” strategy,
and at MTBF < 20 s for the “intermediate save” strategy.

Figure 6(c) shows the measured wall-clock run-time for the two fault tolerant strate-
gies and the failure-free run. Between the two fault tolerant versions no significant dif-
ference is measured. At MTBF = 2 ·104 s we see the small overhead (around 5%) of
both fault tolerant runs, compared to the standard failure-free ALSVID-UQ implemen-
tation. For the fault tolerant versions the run-time remains approximately constant for
MTBF > 100 s. Then the run-time decreases.

Figure 6(d) presents two measurements for the “intermediate save” strategy. (The re-
sults for the “late save” strategy are similar.) The first measurement “all samples failed”
shows how often no samples at all could be computed, since too many processes failed.
Then no FT-MLMC result is computed, such that these runs are ignored in the error com-
putation of Fig. 6(b). The same holds for runs which crashed (indicated by “program
crashed”).
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Figure 2: The architecture of FT-MRMPI.

2.4 Our Opportunities

We have found that we can force all processes of an MPI
program to exit if any of them detect an error using current
MPI semantics. This mimics failure detection and notifica-
tion. All the processes are terminated, and the user has to
restart the failed MapReduce application as a new job. For
this reason, the checkpoint/restart fault tolerance model [8,
40] is a logically first option for MapReduce because the
recovered application can continue processing from the lat-
est checkpoint rather than starting over. Despite the ad-
ditional overhead that the checkpoint/restart model intro-
duces, it has distinct advantages in its compatibility with
gang scheduling and it requires no changes to MPI.

Fault tolerance is one of the major focuses in the future
MPI standard. One of the proposals is User Level Failure
Mitigation (ULFM) proposed in our prior work. It enables
application-level fault tolerance by o↵ering interfaces to ap-
plications and libraries to mitigate failure. It allows a failed
MPI program to recover without restarting the job and en-
ables us to use the detect/resume fault tolerance model [15]
to recover a failed job without restarting it completely. It
provides an automated and e�cient fault tolerant job execu-
tion for MapReduce by redistributing the workload of failed
processes to the surviving ones.

To build a fault tolerant MapReduce in HPC with these
models, we need a new framework that traces the job exe-
cution state and manages workload distribution so that the
work of failed processes can be correctly saved and recovered.
These fault tolerance models also need to be carefully tai-
lored to adapt to MapReduce in HPC clusters. Next section,
we present FT-MRMPI, a novel framework for MapReduce
in MPI that supports both fault tolerance models.

3. SYSTEM DESIGN

FT-MRMPI is a fault tolerant MapReduce framework im-
plemented on MPI. It tracks a consistent state during job
execution and supports e�cient fault tolerance through two
models: checkpoint/restart and detect/resume. The check-
point/restart model o↵ers the basic fault tolerance using the
current MPI semantics. The detect/resume model enables
automated in-place recovery and a more e�cient job execu-
tion engine.

3.1 Overview

Figure 2 shows the structure of a MapReduce application
using FT-MRMPI. FT-MRMPI consists of four components:
TaskRunner, Master, FailureHandler, and LoadBalancer. It

provides a set of interfaces that enable progress tracking of
user-defined tasks. The master is a thread dedicated to job
management. It handles the data operations during check-
pointing and recovery. It also monitors the job execution
status in each process and maintains the global state consis-
tency. The failure handler is a customized MPI error handler
that performs the failure notification, state preservation, and
recovery. The load balancer estimates the completion time
of each process and redistributes the workload to mitigate
load imbalance after recovery from failures. We briefly de-
scribe some major features of FT-MRMPI in the following.

3.2 Task Runner

The lifespan of a MapReduce job can be divided into
three phases: map, shu✏e, and reduce. The map and re-
duce phases are mainly user-defined logics that read input
data, process each record, and writes output results. It is
not trivial to trace the consistent states in all three phases
at a fine granularity.
FT-MRMPI’s task runner provides a set of user-customizable

interfaces for the map and reduce phases. It embeds the
tracing feature into the user-defined logic.
Table 1 shows the interfaces for map and reduce phases

in FT-MRMPI. The main purpose of these new interfaces
is to delegate the essential operations in a MapReduce job
to the library. For example, instead of writing the file op-
erations in the map function, users are expected to tell the
library how the input data should be tokenized and how the
output records should be serialized. This can be achieved
by extending the FileRecordReader and the FileRecord-

Writer class templates. The library will perform the read
and write operations for a MapReduce job and track the
progress at fine granularity. Similarly, the user can also ex-
tend the KVWriter and the KMVReader class templates in case
of special operations is needed when handling the interme-
diate data.
After delegating the I/O operations to the library, the im-

plementation of the map and reduce functions can be largely
simplified. The map and reduce functions only need to con-
tain the job logic that needs to be applied to individual
records. We provide the Mapper and the Reducer class tem-
plates for defining map and reduce functions.
With the interfaces, FT-MRMPI generalizes the workflow

of map and reduce phases. Algorithm 1 shows an example of
a map task in FT-MRMPI. The loop in the map task reads
input data using the record reader that a user provides and
applies the user-defined map function to each input record.
Each iteration has a commit operation that tells FT-MRMPI
that the processing of the current record is finished, and the
task has reached a consistent state. The workflow of the
reduce phase follows the same loop structure.
The state tracing in the shu✏e phase is relatively simple

because no user code is involved. FT-MRMPI traces the
send and receive for each memory bu↵er in data transmission
stage as well as the merging on each partition.

3.3 Distributed Masters

Although a process-local consistent state is su�cient for
fault tolerance in the map and reduce phases. It is not
enough for the shu✏e phase. Unlike the other phases that
have no inter-process coordination, the shu✏e phase has col-
lective communication between all processes. In the shu✏e
phase, all processes in the MapReduce job exchange interme-

And many more…

Fenix Framework/S3D

MapReduce

X10 Language

Domain Decomposition PDE



Use cases: Chekpoints w/Fenix in S3D
• S3D is a production, highly

parallel method-of-lines
solver for PDEs
• used to perform first-principles-based

direct numerical simulations of 
turbulent combustion

• S3D rendered fault tolerant
using Fenix/ULFM

• 35 lines of code modified
in S3D in total!

• Order of magnitude 
performance improvement
in failure scenarios 
• thanks to online recovery and in-

memory checkpoint advantage over 
I/O based checkpointing

• Injection of FT layer: 
addition of a couple of 
Fenix calls

Fenix functions used in S3D to handle 
Checkpointing and comms reconstruction
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Fig. 3. Checkpoint time for different core counts (8.6 MB/core). The numbers
above each test show the aggregated bandwidth (the total checkpoint size over
the average checkpoint time).

MB per node). The bars represent the average among all
checkpoints, all cores, throughout the five repetitions, while
error bars indicate variability (including minimum, maximum,
first, and third quartile). The three different sub-bars show
the three different processes that the checkpoint algorithm
requires. Clearly, the communication cost dominates the ex-
ecution. The lower plot in Figure 2 shows that the checkpoint
time is linearly dependent on data size (for sizes greater than
1 MB/core), as expected.

The overhead caused by each array size strongly influences
the choice of the size to be used in the rest of the experiments
of this paper – 50 grid points per core, which corresponds to
8.58 MB of the yspc array.

Weak scalability. Figure 3 shows how checkpointing scales
to 250k cores as we increase total the number of cores
while achieving similar average checkpoint time, sustaining
a bandwidth of 16.8 TB/s in the test with a higher number of
cores. Again, the checkpoint procedure is dominated mostly
by the transfer cost. As expected, the memcpy time remains
constant throughout all executions, and the garbage collection
cost is negligible.

The lower communication time of the tests with less than
4k cores is due to the configured group size. In small tests it
was set to 16 nodes, while in bigger ones was set to 96 nodes
(the Cray XK7 cabinet size). As the group size is increased,
messages must traverse more Gemini nodes [53] to reach the
destination.

The minimum of each test (the lower point on the error
bars) is in all cases close to the third quartile. Furthermore,
the median (the white line inside the error bar) is below 0.075
in all cases but in the 64k test. These observations indicate that
25% of cores finish the checkpoint process within a reasonably
small time window and half of them take less than 0.075 s,
while others take more time. As this paper is not focused on
the checkpointing process, no further analysis of this behavior
is provided.

Assuming a linear relationship between checkpoint size
and checkpoint writing time in ADIOS, we can extrapolate
a production run’s checkpoint time assuming 8.58 MB/core.
This would be translated to a 90-second checkpoint write

overhead and a 72-second checkpoint read overhead, a 750-
fold increase in the checkpoint time, compared to 0.12 s with
250k ranks obtained with Fenix (Figure 3). Regarding data
recovery time, our implementation only requires the transfer of
the checkpoints to the failed nodes, a process whose overhead
can be expected to be the same as checkpoint time.

Compared to other studies, such as CRUISE [37] (an
extension of SCR [42]), our implementation is slower. This
is mainly due to the fact that we have to send the checkpoint
remotely in order to tolerate entire-node failures, while tests
done in [37] only store checkpoints in local main memory.

D. Validating Optimal Checkpoint Rate

Young’s formula [56], [58] can be used to determine TC ,
the optimal interval between two consecutive checkpoints,
depending on the MTBF of the system (TF ) and the checkpoint
time (TS). The checkpoint time has been determined in Section
V-C. As in the previous weak scalability test, checkpoint size
is 8.58 MB/core, which leads to TS = 0.0748 s in the case
of 2197 cores (Figure 3). For a system with one million
nodes, each with an MTBF of 3 years, the overall system
MTBF will drop to TF = 94.608 seconds. Using second-order
approximation for exponential distribution [56], [58], TC is
expressed as follows:

TC =
√
2TSTF =

√
2 · 0.0748s · 94.608s = 3.76s (2)

As the average S3D iteration time is 1.182 s with 50 grid points
per core (over five executions of a failure- and checkpoint-free
experiment on 2197 cores), TC can be expressed as 3 S3D
iterations rounded due to the fact that checkpoints are triggered
by the application only at the end of iterations. Using the same
procedure as in equation 2, we obtained the optimal number
of iterations between checkpoints for system’ MTBFs of 47
seconds (TC = 2) and 189 seconds (TC = 4).

As suggested in [58], we want to verify the proper usage of
the formula, i.e. the correct parameter settings and the correct
rounding of TC from seconds to application iterations. To do
that, we evaluated the total cost induced by a set of uniformly
distributed, independent failures, for several given checkpoint
rates. Specifically, assuming an MTBF of 94 seconds we used
a Poisson distribution4 to obtain ten random possible failure
timestamps within the 94-second time frame. We obtained
the following timestamps: 12, 19, 24, 32, 41, 51, 61, 70, 78,
91. Next, we had to chose 10 different number of iterations
between consecutive checkpoints. As the formula indicated
frequent checkpoints, we concentrated on the smallest five (1-
5). Also, to have an idea of the cost with lower frequency, we
chose the other five to be disperse (10, 20, 30, 40, 50).

For every checkpoint rate, we evaluated the total overhead
of fault tolerance while injecting a failure to every chosen
failure timestamp. The overheads induced in the resulting 100
experiments, each running 90 iterations, are represented in
Figure 4. To determine which is the interval that offers the
lowest overall overhead, Figure 5 shows the average of the
overheads caused by the ten different failures, on each chosen
checkpoint rate. Within the highlighted tests (2, 3, 4, and 5),
checkpointing every three or four iterations offers the best
overall solution, validating in turn the result from Young’s
formula.

4We used R v 3.0.2, rpois() with a seed of 10, λ = 10.
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Fenix_Checkpoint_Allocate mark a memory segment 
(baseptr,size) as part of the checkpoint.
Fenix_Init Initialize Fenix, and restart point after a 
recovery, status contains info about the restart mode
Fenix_Comm_Add can be used to notify Fenix about 
the creation of user communicators
Fenix_Checkpoint performs a checkpoint of marked
segments 



Use cases: Languages Resilient X10
• X10 is a PGAS programming language
• Legacy resilient X10 TCP based

• MPI operations in resilient X10 runtime
• Progress loop does MPI_Iprobe, post needed recv according to 

probes
• Asynchronous background collective operations (on multiple 

different comms to form 2d grids, etc).

• Recovery
• Upon failure, all communicators recreated (from shrinking a 

large communicator with spares, or using MPI_COMM_SPAWN 
to get new ones)

• Ranks reassigned identically to rebuild the same X10 “teams”

• Injection of FT layer
• Unnecessary, x10 has a runtime that hides all MPI from the 

application and handles failures internally

Source: Sara Hamouda, Benjamin Herta, Josh Milthorpe, David Grove, Olivier Tardieu. Resilient X10 over Fault Tolerant MPI. In : poster 
session SC’15, Austin, TX, 2015.
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Resilient X10

X10 is an APGAS programming language 

that is designed to provide a simple and 

clean programming model for developing 

scale-out applications.

As supercomputers grow larger, the Mean 

Time Between Failure reduces, and the 

need for writing fault tolerance 

applications becomes more critical.

By applying the HBI principle, Resilient X10 will ensure that statement D executes after Task C  nishes, despite the loss of the 

synchronization construct ( nish) at place p

try{ /*Task A*/

 at (p) { /*Task B*/

  finish { at (q) async { /*Task C*/ } }

 }

} catch(dpe:DeadPlaceException){ /*recovery steps*/}

D;

Place r Place p Place q

Resilient X10 over MPI ULFM

CBA

finish
{@q async C;}Happens Before Invariance 

Principle (HBI): 
Failure of a place should not alter 

the happens before relationship 

between statements at the 

remaining places.

val wordCount = new AtomicInteger();

val refCount = GlobalRef(wordCount);

finish for (p in Place.places()) {

  val files = getFilesForPlace(p); 

  at (p) async { //create task at place p

    val pCount = countWords(files, “ibm”);

    at (refCount.home)

      refCount().addAndGet(pCount);

  }

} print(wordCount);

Resilient X10 [1] allows X10 programs to survive process failures. 

By introducing the Happens Before Invariance Principle, it guarantees the 

correct repair of the global program structure after a failure.

Conclusion: Using a fault tolerant MPI 

implementation (ULFM), resilient X10 applications can 

achieve better performance with the optimized MPI 

communication routines and the support for high 

speed network protocols provided by MPI (e.g. 

Infiniband verbs).

Although MPI is the preferred transport layer for scale-out computing, 

Resilient X10 was initially supported only over sockets.

ULFM (User-Level Failure Mitigation) is the most recent proposed 

specification for fault tolerant MPI [2]. An implementation of ULFM is available 

based on OpenMPI 1.7.

We integrated X10 with ULFM to allow Resilient X10 applications to benefit 

from the scalability and performance of MPI.

References:

[1] D. Cunningham, D. Grove, B. Herta, A. Iyengar, K. Kawachiya, H. Murata, V. Saraswat, M. Takeuchi, and O. Tardieu. "Resilient X10: Efficient failure-aware programming." ACM SIGPLAN 

Notices 49, no. 8 (2014): 67-80.

[2] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. J. Dongarra. An evaluation of user-level failure mitigation support in MPI. Springer Berlin Heidelberg, 2012.

[3] J. Milthorpe, D. Grove, B. Herta, and O. Tardieu. Exploring the APGAS programming model using the LULESH proxy application. In Runtime Systems for Extreme Scale Programming Models 

and Architectures Workshop, SC 2015.

Sample X10 program performing distributed word count

Non Resilient Resilient no failure Resilient with a failure
(3 checkpoints + 1 restore)

0

2

4

6

8

10

12

14

16

X10 over Sockets (IP over Infiniband)

X10 over ULFM (Infiniband)

Ti
m

e
 in

 s
e

co
n

d
s

The performance improvement due to using ULFM 

v1.0 for running the LULESH proxy application [3] 

(a shock hydrodynamics stencil based simulation) 

running on 64 processes on 16 nodes with 

problem size 203 per process. The cluster is an 

AMD64 Linux cluster, each node having 16G RAM 

and 2 quad core AMD Opteron 2356 processors.
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Resilient X10 over MPI ULFM

CBA
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Principle (HBI): 
Failure of a place should not alter 
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between statements at the 
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val wordCount = new AtomicInteger();

val refCount = GlobalRef(wordCount);

finish for (p in Place.places()) {

  val files = getFilesForPlace(p); 

  at (p) async { //create task at place p

    val pCount = countWords(files, “ibm”);

    at (refCount.home)

      refCount().addAndGet(pCount);

  }

} print(wordCount);

Resilient X10 [1] allows X10 programs to survive process failures. 

By introducing the Happens Before Invariance Principle, it guarantees the 

correct repair of the global program structure after a failure.

Conclusion: Using a fault tolerant MPI 

implementation (ULFM), resilient X10 applications can 

achieve better performance with the optimized MPI 

communication routines and the support for high 

speed network protocols provided by MPI (e.g. 

Infiniband verbs).

Although MPI is the preferred transport layer for scale-out computing, 

Resilient X10 was initially supported only over sockets.

ULFM (User-Level Failure Mitigation) is the most recent proposed 

specification for fault tolerant MPI [2]. An implementation of ULFM is available 

based on OpenMPI 1.7.
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Use cases: Non traditional HPC
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• Non-HPC workflow usually do not consider 
MPI because it lacks FT
Judicael A. Zounmevo, Dries Kimpe, Robert Ross, and Ahmad Afsahi. 2013. Using MPI in high-
performance computing services. In Proceedings of the 20th European MPI Users' Group Meeting
(EuroMPI '13). ACM, New York, NY, USA, 43-48.SE), 2013 IEEE 16th International Conference on. 
IEEE, 2013. p. 58-65.
• ULFM permits high performance exchange in non-HPC runtimes 

(like Hadoop)

Hadoop over MPI MapReduce Job

MPI

...

ULFM

MapReduce Process

Task
Runner

Distributed
Master

Failure Hdlr

Load 
Balancer

MapReduce Process

Task
Runner

Distributed
Master

Failure Hdlr

Load 
Balancer

Figure 2: The architecture of FT-MRMPI.

2.4 Our Opportunities

We have found that we can force all processes of an MPI
program to exit if any of them detect an error using current
MPI semantics. This mimics failure detection and notifica-
tion. All the processes are terminated, and the user has to
restart the failed MapReduce application as a new job. For
this reason, the checkpoint/restart fault tolerance model [8,
40] is a logically first option for MapReduce because the
recovered application can continue processing from the lat-
est checkpoint rather than starting over. Despite the ad-
ditional overhead that the checkpoint/restart model intro-
duces, it has distinct advantages in its compatibility with
gang scheduling and it requires no changes to MPI.

Fault tolerance is one of the major focuses in the future
MPI standard. One of the proposals is User Level Failure
Mitigation (ULFM) proposed in our prior work. It enables
application-level fault tolerance by o↵ering interfaces to ap-
plications and libraries to mitigate failure. It allows a failed
MPI program to recover without restarting the job and en-
ables us to use the detect/resume fault tolerance model [15]
to recover a failed job without restarting it completely. It
provides an automated and e�cient fault tolerant job execu-
tion for MapReduce by redistributing the workload of failed
processes to the surviving ones.

To build a fault tolerant MapReduce in HPC with these
models, we need a new framework that traces the job exe-
cution state and manages workload distribution so that the
work of failed processes can be correctly saved and recovered.
These fault tolerance models also need to be carefully tai-
lored to adapt to MapReduce in HPC clusters. Next section,
we present FT-MRMPI, a novel framework for MapReduce
in MPI that supports both fault tolerance models.

3. SYSTEM DESIGN

FT-MRMPI is a fault tolerant MapReduce framework im-
plemented on MPI. It tracks a consistent state during job
execution and supports e�cient fault tolerance through two
models: checkpoint/restart and detect/resume. The check-
point/restart model o↵ers the basic fault tolerance using the
current MPI semantics. The detect/resume model enables
automated in-place recovery and a more e�cient job execu-
tion engine.

3.1 Overview

Figure 2 shows the structure of a MapReduce application
using FT-MRMPI. FT-MRMPI consists of four components:
TaskRunner, Master, FailureHandler, and LoadBalancer. It

provides a set of interfaces that enable progress tracking of
user-defined tasks. The master is a thread dedicated to job
management. It handles the data operations during check-
pointing and recovery. It also monitors the job execution
status in each process and maintains the global state consis-
tency. The failure handler is a customized MPI error handler
that performs the failure notification, state preservation, and
recovery. The load balancer estimates the completion time
of each process and redistributes the workload to mitigate
load imbalance after recovery from failures. We briefly de-
scribe some major features of FT-MRMPI in the following.

3.2 Task Runner

The lifespan of a MapReduce job can be divided into
three phases: map, shu✏e, and reduce. The map and re-
duce phases are mainly user-defined logics that read input
data, process each record, and writes output results. It is
not trivial to trace the consistent states in all three phases
at a fine granularity.

FT-MRMPI’s task runner provides a set of user-customizable
interfaces for the map and reduce phases. It embeds the
tracing feature into the user-defined logic.

Table 1 shows the interfaces for map and reduce phases
in FT-MRMPI. The main purpose of these new interfaces
is to delegate the essential operations in a MapReduce job
to the library. For example, instead of writing the file op-
erations in the map function, users are expected to tell the
library how the input data should be tokenized and how the
output records should be serialized. This can be achieved
by extending the FileRecordReader and the FileRecord-

Writer class templates. The library will perform the read
and write operations for a MapReduce job and track the
progress at fine granularity. Similarly, the user can also ex-
tend the KVWriter and the KMVReader class templates in case
of special operations is needed when handling the interme-
diate data.

After delegating the I/O operations to the library, the im-
plementation of the map and reduce functions can be largely
simplified. The map and reduce functions only need to con-
tain the job logic that needs to be applied to individual
records. We provide the Mapper and the Reducer class tem-
plates for defining map and reduce functions.

With the interfaces, FT-MRMPI generalizes the workflow
of map and reduce phases. Algorithm 1 shows an example of
a map task in FT-MRMPI. The loop in the map task reads
input data using the record reader that a user provides and
applies the user-defined map function to each input record.
Each iteration has a commit operation that tells FT-MRMPI
that the processing of the current record is finished, and the
task has reached a consistent state. The workflow of the
reduce phase follows the same loop structure.

The state tracing in the shu✏e phase is relatively simple
because no user code is involved. FT-MRMPI traces the
send and receive for each memory bu↵er in data transmission
stage as well as the merging on each partition.

3.3 Distributed Masters

Although a process-local consistent state is su�cient for
fault tolerance in the map and reduce phases. It is not
enough for the shu✏e phase. Unlike the other phases that
have no inter-process coordination, the shu✏e phase has col-
lective communication between all processes. In the shu✏e
phase, all processes in the MapReduce job exchange interme-
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Figure 10: Decomposition of the aggregated time
for all processes.

the persistent storage, the I/O wait time is 11% longer than
MRMPI. The main overhead for periodically checkpointing
is still the increased number of I/O operations.

6.3 Performance Benefit of Fault Tolerance

Although enabling fault tolerance models in FT-MRMPI
introduces overhead to the job execution, it significantly re-
duces the potential time needed for recovering the job after
failure. Here we demonstrate the performance benefit of
fault tolerance. We run a wordcount job with 128 GB input
data. We measure the total time of two runs. The first run
has one failed process at the reduce phase. The second run
is the recovery run without any further failure. The total
time of these two runs as the performance metric.

Figure 8 shows that FT-MRMPI using the checkpoint/restart
model outperforms MR-MPI by up to 33%. Since MR-MPI
is not fault tolerant, we use the total time of a failed run and
a successful run for comparison. FT-MRMPI using the de-
tect/resume (WC) model not only outperforms MR-MPI by
up to 39%, it also achieves 10%�12% shorter job completion
time than using the checkpoint/restart model. FT-MRMPI
using the detect/resume (NWC) spends 12% � 17% longer
time to finished the job. The extra time is used to reprocess
all the tasks of the failed process.

Figure 9 shows the completion time of the failure and
recovery runs with 256 processes. Comparing the check-
point/restart model with MR-MPI, it is clear that recovering
from checkpoints significantly reduces the time in the recov-
ery run. We also observe the impact of using checkpointing
with the detect/resume model. The detect/resume (NWC)
model, which has no checkpointing, takes 15% longer than
the detect/resume (WC) model does due to the reprocess-
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ing of all tasks in the failed process. However, for simple
MapReduce jobs like wordcount, the detect/resume (NWC)
model still o↵ers decent performance compared to MR-MPI.

The checkpoint/restartmodel and the detect/resume (WC)
model achieved close performance in this case. The di↵er-
ence in the overall time of these two models is mainly be-
cause of the recovery time. As detect/resume only needs to
read the checkpoints of the failed processes, it takes signif-
icantly less time to recover. Figure 10 shows the decompo-
sition of job completion time of the checkpoint/restart and
detect/resume (WC) models. It is clear that the recovery
in the checkpoint/restart model takes longer than the detec-
t/resume (WC) model does.

6.4 Mitigating Continuous Failures

One major reason that FT-MRMPI supports the detec-
t/resume fault tolerance model is to mitigate continuous fail-
ures. The in-place recovery capability of the detect/resume
makes it the best choice for this scenario. Here we use the
BFS and the PageRank benchmarks to evaluate how FT-
MRMPI handles continuous failures in complex jobs.

For each job, we prepared 250 GB of input data. We run
these jobs with 256 processes to avoid the I/O performance
bottleneck. Continuous failures are injected by randomly
terminating one process every 5 seconds. We measure the
job completion time of both the work-conserving and the
non-work-conserving detect/resume models and compare to
a reference time. The reference time is measured as the
failure-free job completion time with the same number of
absent processes.

Figure 11 shows the job completion time of pagerank with
di↵erent number of failed nodes. The results show a signif-



Use cases: Non traditional HPC
• SAP is a production database 

system
• Implemented over MPI for high performance 

applications
• Legacy: Fault tolerance based on full-restart 

• SAP with ULFM
• Collective operations consistency protected by 

agreements
• Database Request continues in-place after an 

errorFigure 5.23: Optimization: Reduce Runtime

Figure 5.24: Optimization: Runtime of TPC-H Benchmark Query 3 with Failure in Phase 4 (1GB Data per
Process)
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Source: Fault Tolerant Collective Communication Algorithms for Distributed 
Database Systems 
Fehlertolerante Gruppenkommunikations Algorithmen für verteilte
Datenbanksysteme
Master-Thesis von Jan Stengler aus Mainz April 2017 

before MPI_COMM_FAILURE_GET_ACKED is returning the group of the failed processes. After this group
has been identified, the repair routine establishes new processes for the tasks of the failed ones. After-
wards the failed processes have to be removed from the communicator. This operation is performed by
using the ULFM function MPI_COMM_SHRINK. This function is implemented analogous to the agreement
function and has therefore also a run-time complexity of O(log(P)) [12]. After executing this function a
new repaired communicator without failed processes is available for the further communication of the
algorithm.

Therefore, the total overhead in case of failures can be identified by the run-time complexity of
O(P log(P)), because two agreements in O(log(P)), one revoke operation in O(P log(P)) and one shrink
operation in O(log(P)) are performed. After the recovery has been performed, the algorithm continues
its execution. In the normal execution only the communications which have not been performed suc-
cessfully are repeated, in order to reduce the costs of failures. This means that the algorithm has not to
be restarted completely from a certain point in time as in checkpointing techniques and the overhead of
terminating the algorithm successfully is reduced in comparison to checkpoint-restart approaches.

Since our strategy is focusing on the applicability in the area of distributed database systems we are
assuming that the data of a failed process is not lost but recoverable. How this recovery is performed
is left to the implementer who is using the fault tolerant collective communication. This recovery can
either be performed by introducing data redundancy which allows the quick recovery of the lost data or
by using a resilient DBMS. In a resilient DBMS data is recoverable for example by recalculating it. This
approach is used in resilient distributed datasets (RDDs) which are used for example by the framework
Apache Spark [61]. An interface for restoring the lost data is given in the signature of the implementation
of the proposed algorithms (see Chapter 4).

The discussed steps of the repair routine are depicted in Figure 3.2.

Figure 3.2: Repair Routine

3.1.2 Correctness of Fault Tolerance Strategy

In the following we argue shortly that the proposed fault tolerance strategy is correct. We assume that
the semantics, provided by ULFM, are correct and the non-deadlock property holds. Furthermore we
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ULFM: support for all FT types

• You application is SPMD
• Coordinated recovery
• Checkpoint/restart based
• ABFT

• ULFM can rebuild the 
same communicators as 
before the failure!
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• Your application is 
moldable
• Parameter sweep
• Master Worker
• Dynamic load balancing

• ULFM can reduce the cost 
of recovery by letting you 
continue to use a 
communicator in limited 
mode (p2p only)
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Other mechanisms

• Supported but not covered in this tutorial: one-sided 
communications and files
• Files: MPI_FILE_REVOKE
• One-sided: MPI_WIN_REVOKE, MPI_WIN_GET_FAILED

• All other communicator based mechanisms are supported via 
the underlying communicator of these objects.
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What is the right approach?
• Bad/good news: there might not be A right approach
• An efficient, scalable and portable approach is certainly a mix of 

multiple approaches
• Algorithm specific approaches seems the most efficient, but they have additional requirements from 

the programming paradigms
• The development cost should be put in balance with the ownership cost

• We need fault tolerance support from the programming 
paradigms
• The glue to allow composability if as important as the approaches themselves

• Is ULFM that glue?
• ULFM is a building box, most developers are not supposed to use it directly
• Instead use domain specific approaches, proposed by the domain scientists as a 

portable library implemented using the ULFM constructs
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More info, examples and resources 
available

http://fault-tolerance.org
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ULFM MPI: Software Infrastructure
• Implementation in Open MPI,

MPICH available
• No performance impact
• Open MPI ULFM 2.0 status
• In sync with Open MPI master (2 weeks ago)

• New features
• SC’16 failure detector integrated (threaded detector, 

RDMA heartbeats optimization, etc.)
• PMIx notifications taken into account
• Fault tolerance with 1-copy CMA shared memory
• Fault tolerance with Non-blocking collective 

operations
• Fail gracefully when failure hit during MPI-IO
• Fail gracefully when failure hit during MPI-RMA
• Slurm, PBS, support improved
• Tested on Cori, Edison, Titan, Summit, etc.
• Failure free performance bump!
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Figure 7: Detection and propagation delay, and impact on completion time of fault-tolerant agreement operation.

formance (center graph) are barely a↵ected by low frequen-
cies of heartbeat emissions. For higher frequencies, the over-
head generated by the noise can reach approximately 10%.
The bandwidth performance is less impacted overall than
the latency, especially for point-to-point bandwidth, which
remains unchanged for all but the most extreme values of ⌘.
The application performance (Linpack, right graph) exhibits
no observable performance degradation for ⌘ � 100ms. For
higher frequencies, the performance degradation remains con-
tained under 2%.

5.4 Failure Detection Time
Figure 7 presents the behavior observed when injecting

failures. The first graph (left) presents the time to reach
a stable state when injecting 1 to 8 failures for a varying
number of nodes. After synchronizing, the desired number
of MPI processes (whose ranks are chosen at random) simu-
late a failure. All other processes post an any-source recep-
tion. When the reception raises a process failure exception
(the only possible outcome for this non-matched any-source
reception), the process counts the number of locally known
failed processes, and if it does not contain all injected fail-
ures, repeats the reception. The time at which all failures
have been locally observed is reported at each rank. We
observe that for small scales, the reported delay is consis-
tently close to �. If emitters were sending heartbeats to their
observer at random starting time, we would expect the de-
tection time to be closer to ��⌘/2; however, as all processes
start to sending heartbeats to their observer at the end of
the MPI_Init function, they are almost synchronized, and
for all runs we observe a consistent delay at small scale.
At larger scale, processes leave MPI_Init at a more variable
date, and the average starts to converge toward the theoreti-
cal bound. This observation matches the model, considering
that in this scenario all failures are “simultaneous”, and that
the random allocation of failures has a low probability of
hurting observer/emitter pairs. Consequently, the detection
and propagation of each of these failures progresses con-
currently and do not su↵er from the cumulative e↵ect of
detecting multiple predecessors’ failures on the ring.

The second experiment (center in Figure 7) investigates
the e↵ect of collisions on the reliable broadcast propagation
delay. The benchmark is similar to the previous experi-
ment, except that before a process simulates a failure, it

sends its observer a special “trigger heartbeat”, which ini-
tiates an immediate propagation reporting it dead, without
waiting for the � timeout. The rest of the observation pro-
tocol remains unchanged (i.e., heartbeats are exchanged be-
tween live processes with an ⌘ period, and the observer of
the injection process switches to observing the predecessor).
We then present the increase in the average duration of the
reliable broadcast when multiple broadcasts are progress-
ing concurrently. To simplify the proof of the upper bound
on stabilization time (Theorem 1), we have considered that
successive broadcasts are totally sequential. This is an ad-
mittedly pessimistic hypothesis, and indeed, performing two
concurrent propagations does not significantly increase the
delay, as the two reliable broadcasts can actually overlap
almost completely. However, starting from 4, and, more
prominently, for 8 concurrent broadcasts, the average com-
pletion time is significantly increased. Considering the small
size of the messages, the bandwidth requirements are small,
and contention on port access is indeed the major cause of
the imperfect overlap between these concurrent broadcasts,
therefore vindicating the importance of considering a port-
limited model during the design of the failure detector and
propagation algorithms.
The last experiment (right in Figure 7) presents the per-

formance of the agreement algorithm after failures have been
injected. The authors of [14] presented a similar perfor-
mance result for their agreement algorithm. In their results,
the agreement performance was severely impacted when fail-
ure were discovered during the agreement (with the fail-
ure free performance of 80µs increasing to approximatively
80ms), an e↵ect the authors claim is due to failure detection
overhead. In their work, failure detection was delegated
to an ORTE based RAS service, responsible for detecting
and propagating failures. In this experiment, we strive to
recreate as closely as possible this setup, except that we de-
ploy our failure detector in lieu of the ORTE RAS service.
We consider the same implementation of the agreement,
on 6,000 Titan cores (the same number of cores they de-
ployed on the generally similar Cray XC30 Darter system).
Some in-band detection capabilities are active, in particular,
failure of shared-memory sibling ranks are reported by the
node’s local operating system. With the replacement of the
ORTE RAS service by our failure detector algorithm, the
time to completion of the agreement algorithm decreases to

vided that no more than k � 1 crashes strike during its ex-
ecution. The time for one complete broadcast algorithm in
Algorithm 1 would then be (upper bounded by) 4⌧ log n in
the absence of any other messages, since we use two HBA
calls in sequence. But our algorithm also requires heart-
beats to be sent along the ring, as well as NewObserver
messages when ring reconnection is needed. Assuming that
⌘ � 3⌧ (where ⌘ is the heartbeat period), we can always in-
sert broadcast and NewObserver messages in between two
successive heartbeats, thereby guaranteeing that a broadcast
in Algorithm 1 will always execute within B(n) = 8⌧ log n,
assuming no new failure interrupts the broadcast operation.

3.1.3 Stable Configuration and Stabilization Time

Here we consider executions that, from the initial con-
figuration, reached a steady state before a failure hit the
system and made it leave that steady state. To prove the
correctness of our algorithm, we show that in a given time,
the system returns to a steady state, assuming that no more
than a bounded number of failures strike during this time.

Connected Node A node p is connected with its successor
in a configuration, if p is alive and emitterp is the closest
predecessor of p that is alive (on the ring). It is connected
with its predecessor if it is alive, and observerp is the clos-
est successor of p that is alive in that configuration. It is
reconnected if it is connected with both its successor and
predecessor. If all processors are reconnected, we say the
ring is reconnected.

Stable Configuration A configuration C is the global state
of all processes plus the status of the network. A configura-
tion is declared as stable, if any alive node p is reconnected
in C and for any node q, q 2 Dp () q is dead in C.

Stabilization Time T (f), with f being the number of over-
lapping failures, is the duration of the longest sequence of
non stable configurations during any execution, assuming at
most f failures during the sequence.

3.2 Correctness and Performance Analysis
The main result is the following proof of correctness, that

provides a deterministic upper bound on the Stabilization
Time T (f) of the algorithm with at most f overlapping
faults:

Theorem 1. With n  N alive nodes, and for any f 
blog nc � 1, we have

T (f)  f(f + 1)� + f⌧ +
f(f + 1)

2
B(n) (1)

where B(n) = 8⌧ log n.

This upper bound is pessimistic for many reasons, which
are discussed after the proof. But the key point is that the
algorithm tolerates up to blog nc � 1 overlapping failures in
logarithmic time O((log n)3).

Proof. Starting from a non stable configuration, the next
stable configuration will be reached when (i) all nodes are
informed of the di↵erent failures via the broadcast, and (ii)
processes of the ring are reconnected. Recall that every
time a node has detected a failure, it initiates a broad-
cast that executes within B = B(n) = 8⌧ log n time units,
and which is guaranteed to reach all alive nodes as long as
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Figure 1: Segments of dead nodes after f = 3 failures: n = 9,
k = 2, I1 = {2, 3}, I2 = {5}, d1 = 2 and d2 = 1.

f  blog nc�1. Because we interleave reconnection messages
within the broadcast, B encompasses both the broadcast
and the reconnection. However, due to the one-port model,
we cannot assume anything about the pipelining of several
consecutive broadcast operations. In this proof, we make a
first simplification by over-approximating T (f) as the max-
imum time R(f) to reconnect the ring after f overlapping
failures, plus the time to execute all the broadcasts that were
initiated, in sequence (assuming no overlap at all). We prove
an upper bound on R(f) by induction, letting R(0) = 0:

Lemma 1. For 1  f  blog nc � 1, we have

R(f)  R(f � 1) + 2f� + ⌧ (2)

Proof. We first prove Equation (2) when f = 1. Assume
that node p, observed by node q, fails. After receiving the
last heartbeat, q needs � time units to detect the failure
(line 15 of Algorithm 1). Thus, the worst possible scenario
is when p fails right after sending a heartbeat, which will
take ⌧ time units to reach q. Thus q detects the failure after
⌧+� time units. Finally, q sends the reconnection message to
the predecessor of p, which will take ⌧ , hence R(1)  2⌧ + �.
We keep the over-approximation R(1)  ⌧ + 2� to simplify
the formula in the general case.
Assume now that Equation (2) holds for all f  blog nc�2.

Now consider an execution with f + 1 overlapping failures,
the first of them striking at time 0 (see Figure 2). The
(f + 1)-th failure strikes at time t. Necessarily t  R(f),
otherwise the ring would have been reconnected after f fail-
ures, and the last one would not be overlapping. There are
f dead nodes just before time t among the original n alive
nodes, which define k  f segments Ii, 1  i  k. Here,
segment Ii is an interval of di � 1 consecutive dead nodes
(see Figure 1). Of course

Pk
i=1 di = f , and there remain

n� f alive nodes. There are multiple cases depending upon
which node is struck by the (f + 1)-th failure at time t:
(a) The new failure strikes a node that is neither a prede-

cessor nor a successor of a segment (e.g., the failure strikes
node 7 in Figure 1). In that case, a new segment of length
1 is created, and the ring is reconnected at time t+R(1).
(b) The new failure strikes a node p that precedes a seg-

ment Ii. Let q be the successor of the last dead node in Ii.
By definition, q 6= p. There are two sub-cases: (i) The pre-
decessor p

0 of p is still alive (e.g., the failure strikes node 1
preceding segment I1 in Figure 1, q = 4 and p

0 = 0 is alive).
Then the size of segment Ii is increased by one. In the worst
case, q is not aware of the death of any node in Ii at time
t, and needs to probe all these nodes one after the other
before reconnecting with p

0 (in the example, q = 4 needs to
try to reconnect with 2 and 1 since it is not aware of their
death). This costs at most (di +1)(2�) + ⌧  2(f +1)�+ ⌧ ,
because di + 1  f + 1, hence the ring is reconnected at

Scalable Failure
Detector

f = supported number of overlapping failures
Stabilization Time T(f) = duration of the 
longest sequence of non stable 
configurations assuming at most f 
overlapping faults
Broadcast Time B(n)

vided that no more than k � 1 crashes strike during its ex-
ecution. The time for one complete broadcast algorithm in
Algorithm 1 would then be (upper bounded by) 4⌧ log n in
the absence of any other messages, since we use two HBA
calls in sequence. But our algorithm also requires heart-
beats to be sent along the ring, as well as NewObserver
messages when ring reconnection is needed. Assuming that
⌘ � 3⌧ (where ⌘ is the heartbeat period), we can always in-
sert broadcast and NewObserver messages in between two
successive heartbeats, thereby guaranteeing that a broadcast
in Algorithm 1 will always execute within B(n) = 8⌧ log n,
assuming no new failure interrupts the broadcast operation.

3.1.3 Stable Configuration and Stabilization Time

Here we consider executions that, from the initial con-
figuration, reached a steady state before a failure hit the
system and made it leave that steady state. To prove the
correctness of our algorithm, we show that in a given time,
the system returns to a steady state, assuming that no more
than a bounded number of failures strike during this time.

Connected Node A node p is connected with its successor
in a configuration, if p is alive and emitterp is the closest
predecessor of p that is alive (on the ring). It is connected
with its predecessor if it is alive, and observerp is the clos-
est successor of p that is alive in that configuration. It is
reconnected if it is connected with both its successor and
predecessor. If all processors are reconnected, we say the
ring is reconnected.

Stable Configuration A configuration C is the global state
of all processes plus the status of the network. A configura-
tion is declared as stable, if any alive node p is reconnected
in C and for any node q, q 2 Dp () q is dead in C.

Stabilization Time T (f), with f being the number of over-
lapping failures, is the duration of the longest sequence of
non stable configurations during any execution, assuming at
most f failures during the sequence.

3.2 Correctness and Performance Analysis
The main result is the following proof of correctness, that

provides a deterministic upper bound on the Stabilization
Time T (f) of the algorithm with at most f overlapping
faults:

Theorem 1. With n  N alive nodes, and for any f 
blog nc � 1, we have

T (f)  f(f + 1)� + f⌧ +
f(f + 1)

2
B(n) (1)

where B(n) = 8⌧ log n.

This upper bound is pessimistic for many reasons, which
are discussed after the proof. But the key point is that the
algorithm tolerates up to blog nc � 1 overlapping failures in
logarithmic time O((log n)3).

Proof. Starting from a non stable configuration, the next
stable configuration will be reached when (i) all nodes are
informed of the di↵erent failures via the broadcast, and (ii)
processes of the ring are reconnected. Recall that every
time a node has detected a failure, it initiates a broad-
cast that executes within B = B(n) = 8⌧ log n time units,
and which is guaranteed to reach all alive nodes as long as
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Figure 1: Segments of dead nodes after f = 3 failures: n = 9,
k = 2, I1 = {2, 3}, I2 = {5}, d1 = 2 and d2 = 1.

f  blog nc�1. Because we interleave reconnection messages
within the broadcast, B encompasses both the broadcast
and the reconnection. However, due to the one-port model,
we cannot assume anything about the pipelining of several
consecutive broadcast operations. In this proof, we make a
first simplification by over-approximating T (f) as the max-
imum time R(f) to reconnect the ring after f overlapping
failures, plus the time to execute all the broadcasts that were
initiated, in sequence (assuming no overlap at all). We prove
an upper bound on R(f) by induction, letting R(0) = 0:

Lemma 1. For 1  f  blog nc � 1, we have

R(f)  R(f � 1) + 2f� + ⌧ (2)

Proof. We first prove Equation (2) when f = 1. Assume
that node p, observed by node q, fails. After receiving the
last heartbeat, q needs � time units to detect the failure
(line 15 of Algorithm 1). Thus, the worst possible scenario
is when p fails right after sending a heartbeat, which will
take ⌧ time units to reach q. Thus q detects the failure after
⌧+� time units. Finally, q sends the reconnection message to
the predecessor of p, which will take ⌧ , hence R(1)  2⌧ + �.
We keep the over-approximation R(1)  ⌧ + 2� to simplify
the formula in the general case.
Assume now that Equation (2) holds for all f  blog nc�2.

Now consider an execution with f + 1 overlapping failures,
the first of them striking at time 0 (see Figure 2). The
(f + 1)-th failure strikes at time t. Necessarily t  R(f),
otherwise the ring would have been reconnected after f fail-
ures, and the last one would not be overlapping. There are
f dead nodes just before time t among the original n alive
nodes, which define k  f segments Ii, 1  i  k. Here,
segment Ii is an interval of di � 1 consecutive dead nodes
(see Figure 1). Of course

Pk
i=1 di = f , and there remain

n� f alive nodes. There are multiple cases depending upon
which node is struck by the (f + 1)-th failure at time t:
(a) The new failure strikes a node that is neither a prede-

cessor nor a successor of a segment (e.g., the failure strikes
node 7 in Figure 1). In that case, a new segment of length
1 is created, and the ring is reconnected at time t+R(1).
(b) The new failure strikes a node p that precedes a seg-

ment Ii. Let q be the successor of the last dead node in Ii.
By definition, q 6= p. There are two sub-cases: (i) The pre-
decessor p

0 of p is still alive (e.g., the failure strikes node 1
preceding segment I1 in Figure 1, q = 4 and p

0 = 0 is alive).
Then the size of segment Ii is increased by one. In the worst
case, q is not aware of the death of any node in Ii at time
t, and needs to probe all these nodes one after the other
before reconnecting with p

0 (in the example, q = 4 needs to
try to reconnect with 2 and 1 since it is not aware of their
death). This costs at most (di +1)(2�) + ⌧  2(f +1)�+ ⌧ ,
because di + 1  f + 1, hence the ring is reconnected at

The broadcast algorithm can tolerate up to
overlapping failures, thus blog(n)c
T (f) ⇠ O((log n)3)

vided that no more than k � 1 crashes strike during its ex-
ecution. The time for one complete broadcast algorithm in
Algorithm 1 would then be (upper bounded by) 4⌧ log n in
the absence of any other messages, since we use two HBA
calls in sequence. But our algorithm also requires heart-
beats to be sent along the ring, as well as NewObserver
messages when ring reconnection is needed. Assuming that
⌘ � 3⌧ (where ⌘ is the heartbeat period), we can always in-
sert broadcast and NewObserver messages in between two
successive heartbeats, thereby guaranteeing that a broadcast
in Algorithm 1 will always execute within B(n) = 8⌧ log n,
assuming no new failure interrupts the broadcast operation.

3.1.3 Stable Configuration and Stabilization Time

Here we consider executions that, from the initial con-
figuration, reached a steady state before a failure hit the
system and made it leave that steady state. To prove the
correctness of our algorithm, we show that in a given time,
the system returns to a steady state, assuming that no more
than a bounded number of failures strike during this time.

Connected Node A node p is connected with its successor
in a configuration, if p is alive and emitterp is the closest
predecessor of p that is alive (on the ring). It is connected
with its predecessor if it is alive, and observerp is the clos-
est successor of p that is alive in that configuration. It is
reconnected if it is connected with both its successor and
predecessor. If all processors are reconnected, we say the
ring is reconnected.

Stable Configuration A configuration C is the global state
of all processes plus the status of the network. A configura-
tion is declared as stable, if any alive node p is reconnected
in C and for any node q, q 2 Dp () q is dead in C.

Stabilization Time T (f), with f being the number of over-
lapping failures, is the duration of the longest sequence of
non stable configurations during any execution, assuming at
most f failures during the sequence.

3.2 Correctness and Performance Analysis
The main result is the following proof of correctness, that

provides a deterministic upper bound on the Stabilization
Time T (f) of the algorithm with at most f overlapping
faults:

Theorem 1. With n  N alive nodes, and for any f 
blog nc � 1, we have

T (f)  f(f + 1)� + f⌧ +
f(f + 1)

2
B(n) (1)

where B(n) = 8⌧ log n.

This upper bound is pessimistic for many reasons, which
are discussed after the proof. But the key point is that the
algorithm tolerates up to blog nc � 1 overlapping failures in
logarithmic time O((log n)3).

Proof. Starting from a non stable configuration, the next
stable configuration will be reached when (i) all nodes are
informed of the di↵erent failures via the broadcast, and (ii)
processes of the ring are reconnected. Recall that every
time a node has detected a failure, it initiates a broad-
cast that executes within B = B(n) = 8⌧ log n time units,
and which is guaranteed to reach all alive nodes as long as

8

7

6
5

4

3

2
1

0

Figure 1: Segments of dead nodes after f = 3 failures: n = 9,
k = 2, I1 = {2, 3}, I2 = {5}, d1 = 2 and d2 = 1.

f  blog nc�1. Because we interleave reconnection messages
within the broadcast, B encompasses both the broadcast
and the reconnection. However, due to the one-port model,
we cannot assume anything about the pipelining of several
consecutive broadcast operations. In this proof, we make a
first simplification by over-approximating T (f) as the max-
imum time R(f) to reconnect the ring after f overlapping
failures, plus the time to execute all the broadcasts that were
initiated, in sequence (assuming no overlap at all). We prove
an upper bound on R(f) by induction, letting R(0) = 0:

Lemma 1. For 1  f  blog nc � 1, we have

R(f)  R(f � 1) + 2f� + ⌧ (2)

Proof. We first prove Equation (2) when f = 1. Assume
that node p, observed by node q, fails. After receiving the
last heartbeat, q needs � time units to detect the failure
(line 15 of Algorithm 1). Thus, the worst possible scenario
is when p fails right after sending a heartbeat, which will
take ⌧ time units to reach q. Thus q detects the failure after
⌧+� time units. Finally, q sends the reconnection message to
the predecessor of p, which will take ⌧ , hence R(1)  2⌧ + �.
We keep the over-approximation R(1)  ⌧ + 2� to simplify
the formula in the general case.
Assume now that Equation (2) holds for all f  blog nc�2.

Now consider an execution with f + 1 overlapping failures,
the first of them striking at time 0 (see Figure 2). The
(f + 1)-th failure strikes at time t. Necessarily t  R(f),
otherwise the ring would have been reconnected after f fail-
ures, and the last one would not be overlapping. There are
f dead nodes just before time t among the original n alive
nodes, which define k  f segments Ii, 1  i  k. Here,
segment Ii is an interval of di � 1 consecutive dead nodes
(see Figure 1). Of course

Pk
i=1 di = f , and there remain

n� f alive nodes. There are multiple cases depending upon
which node is struck by the (f + 1)-th failure at time t:
(a) The new failure strikes a node that is neither a prede-

cessor nor a successor of a segment (e.g., the failure strikes
node 7 in Figure 1). In that case, a new segment of length
1 is created, and the ring is reconnected at time t+R(1).
(b) The new failure strikes a node p that precedes a seg-

ment Ii. Let q be the successor of the last dead node in Ii.
By definition, q 6= p. There are two sub-cases: (i) The pre-
decessor p

0 of p is still alive (e.g., the failure strikes node 1
preceding segment I1 in Figure 1, q = 4 and p

0 = 0 is alive).
Then the size of segment Ii is increased by one. In the worst
case, q is not aware of the death of any node in Ii at time
t, and needs to probe all these nodes one after the other
before reconnecting with p

0 (in the example, q = 4 needs to
try to reconnect with 2 and 1 since it is not aware of their
death). This costs at most (di +1)(2�) + ⌧  2(f +1)�+ ⌧ ,
because di + 1  f + 1, hence the ring is reconnected at

reconnect propagate

Timeout for suspecting a failure 2.5s
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Scalable Revocation
• The underlying BMG topology is 

symmetric and reflects in the revoke 
which is independent of the initiator

• The performance of the first post-Revoke 
collective operation sustains some 
performance degradation resulting from 
the network jitter associated with the 
circulation of revoke tokens

• After the 2nd Allreduce (approximately 
1ms on 32k processes), the application 
is fully resynchronized, and the Revoke 
reliable broadcast has completely 
terminated, therefore leaving the 
application free from observable jitter. 

TI
M
E
(m
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MESSAGE SIZE (Bytes)

Revoke Time and Perturbation in AllReduce (np=32768, OLCF Titan uGNI+CMA)

Fault Free AllReduce
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Scalable Agreement

79

• Early Returning Algorithm: once the 
decision reached the local process 
returns, but the decided value remains 
available for providing to other processes

• The underlying logical topology 
hierarchically adapts to reflects to 
network topology

• In the failure-free case the 
implementation exhibits the theoretically 
proven logarithmic behavior, similar to an 
optimized version of MPI_Allreduce

(a) ERA versus Log2phases Agreement scal-
ability in the failure-free case.
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(b) ERA performance depending on the tree
topology.

(c) Post Failure Agreement Cost.

Failed Ranks 0 (root) 4 (child of 0) 16 (node master) 17 (child of 16) 16–31 (full node)

Detecting Agreement 12,659 93,816 80,023 112,414 82,171
Stabilize Agreement 104.9 102 98.9 104.2 117.1
Post-failure Agreement 69.7 75.7 77.1 76.7 85.2

(d) Cost (µs) depending on the role of the failed process in a bin/bin ERA w/o rebalancing, 6000 procs.

Figure 2: Synthetic benchmark performance of the agreement.

resentation, it is implemented just above the Byte Trans-
fer Layer of Open MPI (below the MPI semantic layer):
this enables the reception ofRESULTREQUEST messages
even when outside an MPIX_COMM_AGREE call, as imposed by
the early returning property of the algorithm. Additionally,
based on our prior studies highlighting the fact that local
computations exhibiting linear behaviors dominate the cost,
even in medium scale environments, we have taken extra
steps to ensure that, when possible, all local operations fol-
low a logarithmic time-to-solution.

This implementation was validated using a stress test that
performs an infinite loop of agreements, where any failed
process is replaced with a new process. Failures are injected
by killing random MPI processes with di↵erent frequencies.
A 24h run on 128 processors (16 nodes, 8 cores each, TCP
over Gigabit Ethernet) completed 969,739 agreements suc-
cesfully while tolerating 146,213 failures.

5.1 Agreement Performance

We deploy a synthetic benchmark on the NICS Darter
supercomputer, a Cray XC30 (cascade) machine, to analyze
the agreement latency with and without failures at scale.
We employ the ugni transport layer to exploit the Cray
Aries interconnect, and the sm transport layer for inter-core
communication.

The benchmark calls MPIX_COMM_AGREE in a loop, with fail-
ures injected at controllable iterations and processes. We
consider four types of agreements: failure-free agreements
precede the injection of a failure. The first agreement during
which a failure manifests is the failure detecting agreement;
it returns MPI_ERR_PROC_FAILED per ULFM specification.
One additional stabilizing agreement, or more for complex
failure scenarios, is then necessary to acknowledge the fail-
ure(s), optimize the agreement tree, and return MPI_SUCCESS.
Subsequent post-failure agreements do not experience sup-
plementary failures. For each participant, we collect the

mean duration, and the standard deviation over 32k agree-
ments; the reported mean time is the maximum between the
mean times collected at all processes.

Scalability. In Figure 2a, we present the scalability trend
of ERA when no failures are disturbing the system. We con-
sider two di↵erent agreement implementations, 1) the known
state-of-the-art 2-phase-commit Agreement algorithm pre-
sented in [23], called Log2phases, and 2) our best perform-
ing version of ERA. We also add, for reference, the perfor-
mance of an Allreduce operation that in a failure-free con-
text would have had the same outcome as the agreement.
With the bin/bin topology on the darter machine using one
process per core, thus 16 processes per node, the average
branching degree of non-leaf nodes is 2.125. The ERA and
the Allreduce operations both exhibit a logarithmic trend
when the number of nodes increase, as can be observed by
the close fit (asymptotic standard error of 0.6%) of the log-
arithmic function era(x) = 6.7 log2.125(x). In contrast, the
Log2phases algorithm exhibits a linear scaling with the num-
ber of nodes, despite the expected theoretical bound pro-
posed in [23]. As a result, we stopped testing the perfor-
mance of the Log2phases algorithms at larger scale or under
the non failure-free scenarios.

Communication Topologies. In Figure 2b we compare the
performance of di↵erent architecture-aware versions of the
ERA algorithm. In the flat binary tree, all ranks are orga-
nized in a binary tree, regardless of the hardware locality of
ranks collocated on cores of the same node. In the hierar-
chical methods, one rank represents the node and partici-
pates in the inter-node binary tree; on each node, collocated
ranks are all children of the representing rank in the bin/s-
tar method, or are organized along a node-local binary tree
in the bin/bin method. The flat binary topology ERA and
the Open MPI Allreduce are both hardware locality agnos-

NICS Darter (Cray XC30)



ADVANCED CONTENT
How to design your own replace/spare system (not presented live)

83



Inside MPIX_COMM_REPLACE
30 if( comm == MPI_COMM_NULL ) { /* am I a new process? */
31 /* I am a new spawnee, waiting for my new rank assignment
32 * it will be sent by rank 0 in the old world */
33 MPI_Comm_get_parent(&icomm);
35 MPI_Recv(&crank, 1, MPI_INT, 0, 1, icomm, MPI_STATUS_IGNORE);

…
40  }
41 else {
42 /* I am a survivor: Spawn the appropriate number
43 * of replacement
45 /* First: remove dead processes */
46 MPIX_Comm_shrink(comm, &scomm);
47 MPI_Comm_size(scomm, &ns);
48 MPI_Comm_size(comm, &nc);
49 nd = nc-ns; /* number of deads */
50 if( 0 == nd ) {
51 /* Nobody was dead to start with. We are done here */

…
54 return MPI_SUCCESS;
55 }
56 /* We handle failures during this function ourselves... */
57 MPI_Comm_set_errhandler( scomm, MPI_ERRORS_RETURN );
59 rc = MPI_Comm_spawn(gargv[0], &gargv[1], nd, MPI_INFO_NULL,
60 0, scomm, &icomm, MPI_ERRCODES_IGNORE);

84

Same as in spare: new 
guys wait for their rank 
from 0 in the old world

Spawn nd new processes

See 10.respawn



Intercommunicators – P2P

• Intracommunicator • Intercommunicator

On process 0:
MPI_Send( buf, MPI_INT, 1, n, tag, intercomm )

N = 3
N = 3



• And what�s a intercommunicator ?

• MPI_COMM_REMOTE_SIZE(comm, size)
MPI_COMM_REMOTE_GROUP( comm, group)

• MPI_COMM_TEST_INTER(comm, flag)
• MPI_COMM_SIZE, MPI_COMM_RANK return 

the local size respectively rank

Intercommunicators

- some more processes
- TWO groups
- one communicator



Anatomy of a Intercommunicator

a1 a2 a3 a4

b1 b2 b3

Intercommunicator

Group (A)

Group (B)

For any processes from group (A)
• (A) is the local group
• (B) is the remote group

For any processes from group (B)
• (A) is the remote group
• (B) is the local group

It�s not possible to send a 
message to a process in the 
same group using this 
communicator



Inside MPIX_Comm_replace
59 rc = MPI_Comm_spawn(gargv[0], &gargv[1], nd, MPI_INFO_NULL,
60 0, scomm, &icomm, MPI_ERRCODES_IGNORE);
61 flag = (MPI_SUCCESS == rc);                                                                                             
62 MPIX_Comm_agree(scomm, &flag);
63 if( !flag ) {
64 if( MPI_SUCCESS == rc ) {
65 MPIX_Comm_revoke(icomm);
66 MPI_Comm_free(&icomm);
67 }
68 MPI_Comm_free(&scomm);
…
70 goto redo;
71 }

88

Check if spawn worked 
(using the shrink comm)

If not, make the spawnees
abort with MPI_ERR_REVOKE

See 9.respawn

We need to check if spawn succeeded before proceeding further…



Intercommunicators
• MPI_INTERCOMM_MERGE( intercomm, high, intracomm)

• Create an intracomm from the union of the two groups
• The order of processes in the union respect the original one
• The high argument is used to decide which group will be first (rank 0)

a1 a2 a3 a4

b1 b2 b3

high = false

high = true

b1 b2 b3 a1 a2 a3 a4



Respawn 3/3
95 /* Merge the intercomm, to reconstruct an intracomm (we check
96 * that this operation worked before we proceed further) */
97 rc = MPI_Intercomm_merge(icomm, 1, &mcomm);
98 rflag = flag = (MPI_SUCCESS==rc);
99 MPIX_Comm_agree(scomm, &flag);
100 if( MPI_COMM_WORLD != scomm ) MPI_Comm_free(&scomm);
101 MPIX_Comm_agree(icomm, &rflag);
102 MPI_Comm_free(&icomm);
103 if( !(flag && rflag) ) {
…
108 goto redo;
109 }

90

• First agree on the local group (a’s know 
about flag provided by a’s)

• Second agree on the remote group (a’s 
know about flag provided by b’s)

• At the end, all know if both flag and rflag
(flag on the remote side) is good

Merge the icomm
We are back with an intra

Verify that icomm_mege
worked takes 2 

agreements

a1 a2 a3 a4

b1 b2 b3

Group (A)

Group (B)

See 10.respawn



Copy an errhandler

130 /* restore the error handler */
131 if( MPI_COMM_NULL != comm ) {
132 MPI_Errhandler errh;
133 MPI_Comm_get_errhandler( comm, &errh );
134 MPI_Comm_set_errhandler( *newcomm, errh );
135 }

91

• In the old world, newcomm should have the same error 
handler as comm
• We can copy the errhandler function J
• New spawns do have to set the error handler explicitly (no old comm to 

compy it from)

See 10.respawn



Rank Reordering
74 /* remembering the former rank: we will reassign the same
75 * ranks in the new world. */
76 MPI_Comm_rank(comm, &crank);
77 MPI_Comm_rank(scomm, &srank);
78 /* the rank 0 in the scomm comm is going to determine the
79 * ranks at which the spares need to be inserted. */
80 if(0 == srank) {
81 /* getting the group of dead processes:
82 *   those in comm, but not in scomm are the deads */
83 MPI_Comm_group(comm, &cgrp);
84 MPI_Comm_group(scomm, &sgrp);
85 MPI_Group_difference(cgrp, sgrp, &dgrp);
86 /* Computing the rank assignment for the newly inserted spares 

*/
87 for(i=0; i<nd; i++) {
88 MPI_Group_translate_ranks(dgrp, 1, &i, cgrp, &drank);
89 /* sending their new assignment to all new procs */
90 MPI_Send(&drank, 1, MPI_INT, i, 1, icomm);
91 }

92

See 11.respawn_reorder



Working with spares
• First use case:
• We deploy with mpirun –np p*q+s, where s is extra processes for recovery
• Upon failure, spare processes join the work communicator

93

73 /* Let's create an initial world, a copy of MPI_COMM_WORLD w/o
74 * the spare processes */
75 spare = (rank>np-SPARES-1)? MPI_UNDEFINED : 1;
76 MPI_Comm_split( MPI_COMM_WORLD, spare, rank, &world );
77 
78 /* Spare process go wait until we need them */
79 if( MPI_COMM_NULL == world ) {
80 do {
81 MPIX_Comm_replace( MPI_COMM_WORLD, MPI_COMM_NULL, &world );
82 } while(MPI_COMM_NULL == world );
83 MPI_Comm_size( world, &wnp );
84 MPI_Comm_rank( world, &wrank );
85 goto joinwork;
86 }

Split the spares out of 
“world”, the work 

communicator

We will define (ourselves) 
MPIX_Comm_replace, a 

function that fix the world

See ex3.0.shrinkspares.c



Working with spares

• A look at what we need to do…
94

19 int MPIX_Comm_replace(MPI_Comm worldwspares, MPI_Comm comm, MPI_Comm
*newcomm) {
…
25 /* First: remove dead processes */
26 MPIX_Comm_shrink(worldwspares, &shrinked);
27 /* We do not want to crash if new failures come... */
28 MPI_Comm_set_errhandler( shrinked, MPI_ERRORS_RETURN );
29 MPI_Comm_size(shrinked, &ns); MPI_Comm_rank(shrinked, &srank);
30 
31 if(MPI_COMM_NULL != comm) { /* I was not a spare before... */
32 /* not enough processes to continue, aborting. */
33 MPI_Comm_size(comm, &nc);
34 if( nc > ns ) MPI_Abort(worldwspares, MPI_ERR_PROC_FAILED);
35 
36 /* remembering the former rank: we will reassign the same
37 * ranks in the new world. */
38 MPI_Comm_rank(comm, &crank);
40 /* >>??? is crank the same as srank ???<<< */
42 } else { /* I was a spare, waiting for my new assignment */
44 }
45 printf("This function is incomplete! The comm is not repaired!\n");

Shrink MPI_COMM_WORLD

See ex3.0.shrinkspares.c



Assigning ranks to spares

• a
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31 if(MPI_COMM_NULL != comm) { /* I was not a spare before... */
…
36 /* remembering the former rank: we will reassign the same
37 * ranks in the new world. */
38 MPI_Comm_rank(comm, &crank);
39 
40 /* the rank 0 in the shrinked comm is going to determine the
41 * ranks at which the spares need to be inserted. */
42 if(0 == srank) {
43 /* getting the group of dead processes:
44 *   those in comm, but not in shrinked are the deads */
45 MPI_Comm_group(comm, &cgrp); MPI_Comm_group(shrinked, &sgrp);
46 MPI_Group_difference(cgrp, sgrp, &dgrp); MPI_Group_size(dgrp, &nd);
47 /* Computing the rank assignment for the newly inserted spares */
48 for(i=0; i<ns-(nc-nd); i++) {
49 if( i < nd ) MPI_Group_translate_ranks(dgrp, 1, &i, cgrp, &drank);
50 else drank=-1; /* still a spare */
51 /* sending their new assignment to all spares */
52 MPI_Send(&drank, 1, MPI_INT, i+nc-nd, 1, shrinked);
53 }
…
55 }
56 } else { /* I was a spare, waiting for my new assignment */
57 MPI_Recv(&crank, 1, MPI_INT, 0, 1, shrinked, MPI_STATUS_IGNORE);
58 }

See ex3.1.shrinkspares_reorder.c



Inserting the spares in world
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31 if(MPI_COMM_NULL != comm) { /* I was not a spare before... */
…
36 /* remembering the former rank: we will reassign the same
37 * ranks in the new world. */
38 MPI_Comm_rank(comm, &crank);
…
51 /* sending their new assignment to all spares */
52 MPI_Send(&drank, 1, MPI_INT, i+nc-nd, 1, shrinked);
…
56 } else { /* I was a spare, waiting for my new assignment */
57 MPI_Recv(&crank, 1, MPI_INT, 0, 1, shrinked, MPI_STATUS_IGNORE);
58 }
60 /* Split does the magic: removing spare processes and reordering ranks
61 * so that all surviving processes remain at their former place */
62 rc = MPI_Comm_split(shrinked, crank<0?MPI_UNDEFINED:1, crank, newcomm);
… 
67 flag = MPIX_Comm_agree(shrinked, &flag);
68 MPI_Comm_free(&shrinked);
69 if( MPI_SUCCESS != flag ) {
70 if( MPI_SUCCESS == rc ) MPI_Comm_free( newcomm );
71 goto redo;
72 }
73 return MPI_SUCCESS;

Send, Recv or Split could have 
failed due to new failures…
If any new failure, redo it all

See ex3.1.shrinkspares_reorder.c



Respawn in action: buddy C/R
109 MPI_Comm_get_parent( &parent );
110 if( MPI_COMM_NULL == parent ) {
111 /* First run: Let's create an initial world,
112 * a copy of MPI_COMM_WORLD */
113 MPI_Comm_dup( MPI_COMM_WORLD, &world );
…
116 } else {
117 /* I am a spare, lets get the repaired world */
118 app_needs_repair(MPI_COMM_NULL);
119 }
…
184 setjmp(jmpenv);
185 while(iteration < max_iterations) {
186 /* take a checkpoint */
187 if(0 == iteration%2) app_buddy_ckpt(world);
188 iteration++;
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• Do the operation until 
completion, and nobody 
else needs repair

• New spawns (obviously) 
need repair

• Function 
“app_needs_repair” 
reloads checkpoints, 
sets the restart 
iteration, etc…

• “app_needs_repair”  
Called upon restart, in 
the error handler, and 
before completion

See 12.buddycr.c

setjmp

longjmp
PC



Triggering the Restart
121 static int app_needs_repair(void) {
122 MPI_Comm tmp;
123 MPIX_Comm_replace(world, &tmp);
124 if( tmp == world ) return false;
125 if( MPI_COMM_NULL != world) MPI_Comm_free(&world);
126 world = tmp;
127 app_reload_ckpt(world);
128 /* Report that world has changed and we need to re-execute */
129 return true;
130 }
131 
132 /* Do all the magic in the error handler */
133 static void errhandler_respawn(MPI_Comm* pcomm, int* errcode, ...) {
…
142 if( MPIX_ERR_PROC_FAILED != eclass &&
143 MPIX_ERR_REVOKED != eclass ) {
144 MPI_Abort(MPI_COMM_WORLD, *errcode);
145 }
146 MPIX_Comm_revoke(*pcomm);                                                                                       
147 if(app_needs_repair()) longjmp(jmpenv, 0);
148 }
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See 12.buddycr.c

• Upon completion of the 
spawn and recreation of 
the new communicator 
if repairs have been 
done then we longjmp
to skip the remaining of 
the loop, and return to 
the last coherent 
version. Keep in mind 
that longjmp does not 
restore the variables, 
but leaves them as they 
were at the moment of 
the fault.



Simple Buddy Checkpoint
49 static int app_buddy_ckpt(MPI_Comm comm) {
50 if(0 == rank || verbose) fprintf(stderr, "Rank %04d: checkpointing to %04d after iteration 
%d\n", rank, rbuddy(rank), iteration);
51 /* Store my checkpoint on my "right" neighbor */
52 MPI_Sendrecv(mydata_array, count, MPI_DOUBLE, rbuddy(rank), ckpt_tag,
53 buddy_ckpt,   count, MPI_DOUBLE, lbuddy(rank), ckpt_tag,
54 comm, MPI_STATUS_IGNORE);
55 /* Commit the local changes to the checkpoints only if successful. */
56 if(app_needs_repair()) {
57 fprintf(stderr, "Rank %04d: checkpoint commit was not successful, rollback instead\n", 
rank);
58 longjmp(jmpenv, 0);
59 }
60 ckpt_iteration = iteration;
61 /* Memcopy my own memory in my local checkpoint (with datatypes) */
62 MPI_Sendrecv(mydata_array, count, MPI_DOUBLE, 0, ckpt_tag,
63 my_ckpt, count, MPI_DOUBLE, 0, ckpt_tag,
64 MPI_COMM_SELF, MPI_STATUS_IGNORE);
65 return MPI_SUCCESS;
66 }

99

See 12.buddycr.c


