Application-driven Fault-Tolerance for High
Performance Distributed Computing

George Bosilca, UTK Bogdan Nicolae, ANL
Franck Cappelle, ANL
\\)|—’ And many more

EEEEEEEEEEEEEEEEEEEEEEEE

lCL < = EuroPar 2018 Conference

AVSPMQQSORQ INNOVATIVE T, faly

COMPUTING LABORATORY
ou UNIVERSITYof TENNESSEE

Preparing for the hands-on

https://fault-tolerance.org/2018/08/27/europarl8-tutorial/

» Source code of all examples:
https://fault-tolerance.org/downloads/europarl8-handson.tgz

* Run with The ULFM Docker image

Install Docker (requires external download)

docker pull bnicolae/veloc-tutorial (requires external download)
Download source code tarball (requires external download)
Open terminal and source dockervars.sh

o kK wbh P

mpirun -np 10 example

https://fault-tolerance.org/downloads/europar18-handson.tgz
https://fault-tolerance.org/2018/08/27/europar18-tutorial/

Fault Tolerance: many solutions

Coordlnated checkpoint

- Rollback Recovery d E E (with blocking,

* Not only the legacy approach constant checkpoints)

« Checkpoint/Restart based E E EE

« Many possible improvements (in
memory, buddy, async, hierarch,...)

« No checkpoint, no message logging

- Forward Recovery —y - Overhead due to synchronizations between replicas
- Replication (the only system level - Benefit: Possible soft error detection and recovery
Forward Recovery) " £ B
- Master-Worker with resubmission .
. Iterative methods, Naturally fault NN |
tolerant algorithms i
» Algorithm Based Fault Tolerance
— Evaluating the Viability ::f P:;c;s I%’(:pll::atijn ;;Iiazilit;oforozxascale Systems

- Kurt Ferreira, Jon Stearley, James H. Laros Ill, Ron Oldfield, Kevin Pedretti,
Ron Brightwell, Patrick G. Bridges, Dorian Arnold and Rolf Riesen - SC’'11

Fault Tolerance: many solutions

™« Any technique that permit the application

- Rollback Recovery | _
to continue without rollback

« Not only the legacy approach

» Checkpoint/Restart based No checkpoint /0 overhead

* Many possible improvements (in No rollback, no loss of completed work
memory, buddy, async, hierarch,...) May require (sometime expensive, like
- Forward Recovery replicates) protection/recovery operations,
« Replication (the only system level but generally more scalable than
Forward Recovery) -< checkpoint

- Master-Worker with resubmission Often requires in-depths algorithm rewrite

. Iterative methods, Naturally fault (in contrast to automatic system based C/R)
tolerant algorithms —=
. Algorithm Based Fault Tolerance “Why is not everybody doing this already,
then?”

Algorithm Based Fault Tolerance (ABFT)

Takes advantage of existing mathematical relationship(s)

* Introduced (cheaply, if possible) by ABFT

KH Huang & Jacob Abraham, ABFT for Matrix Operations, IEEE Trans.

]]

Computers. 01/1984;
Matrix extended to contain
additional information.

» Extra column or row

contains checksum.

Matrix algorithm designed to
operate on the data and the
encoded checksum.

* Checksum invariant during

the course of the algorithm.

A

- GTA -

xlB BG]=

AB ABG

' G'AB G'ABG |

* No checkpoint needed. GT 1 GTA and B(F are the check sums.

Algorithm Based Fault Tolerance (ABFT)

lecoe advinntado nf ovicetindS mathomatinal roalatinnechin/c)

< O X

O
el

For Dense Linear Algebra Factorizations (POTRF, QR, LU)

Memory Overhead

Matrix M x N, Blocks mb x nb,
Process grid p x g

F
O(— x M x N)
q
 Matrix is extended with 2F

columns every g columns a

N.B. Usually F << q

Relative overheads in F/q
e.g. 2 simultaneous faults on 192x192
process grid => 1% memory overhead

Computation Overhead

F: maximum number of
simultaneous failures tolerated

F
O(— x M?)
q
flops for the checksum update,

and O(MN)

flops for the checksum creation.
Less than 5% computational
overhead

ABG
G'ABG |

Mixed resilient solutions (model)

« An iterative application using a resilient library

Protect the application with traditional checkpoint/restart
Protect the library with new techniques (ABFT)

) 6 r Nb Faults Periodichpt —— ‘ ﬂ

Periodic
Checkpoint

\

Process 0 4[’ Application
| Library
Process 1 4[’ [Application
| Library
Process 2 4[’ | Application
| Library
Split
Forced

Checkpoints

Mixed resilient solutions (model)

» An iterative application using a resilient library

» Protect the application with traditional checkpoint/restart

» Protect the library with new techniques (ABFT)

Periodic
Checkpoint
Process 0 —[F_[g [— Application
1] L —[Library
Process 1 —[r—[g] [— Application
1] L L] —[Library
Process 2 —[—[[— Application
[[L Library

f
« Augment the initial data with extra infe¥thation (e.g.

checksum)

Checkpoints

« Maintain this extra information through the algorithm

« Allow soft and hard error survival

« Library using ABFT: dense and sparse LA, matrix-matrix
multiplications, one-sided and two-sided factorizations,

CG, GMRES

Faults

Waste

40

30 |
20

10
0
0.4

0.35 -

0.3
0.25
0.2
0.15
0.1

0.05 [

Nb Faults PeriodicCkpt memss
Nb Faults Bi-PeriodicCkpt ‘
Nb Faults ABFT Penodlchpt — I |I

E &

PeriodicCkpt ——
Bi-PeriodicCkpt
ABFT PeriodicCkpt -

-,_,”r”

- - - - - - T e e

. . L
1k 10k 100k 1M

Exascale machine: same comp increase
Memory per component remains constant
Problem size increases (O(\/n): matrix based)
uatn=10° 1 day is O(1/n)

C (=R) at n=10°is Im, is in O(n)

80% in library, 20% in application

Mixed resilient solutions (model)

» An iterative application using a resilient library

» Protect the application with traditional checkpoint/restart

» Protect the library with new techniques (ABFT)

Periodic

Checkpoint

1

— Application

—[Library

1

— Application

—[Library

Process 0 _[r_[J
L L
Process 1 _[r_[J
L L
Process 2 _[r_[J
L L

— Application
Library

f
« Augment the initial data with extra infe¥thation (e.g.

checksum)

Checkpoints

« Maintain this extra information through the algorithm
« Allow soft and hard error survival

« Library using ABFT: dense and sparse LA, matrix-matrix
multiplications, one-sided and two-sided factorizations,

CG, GMRES

@ 6F Nb Faults PeriodicCkpt s f’ e
S 4 Nb Faults Bi-PeriodicCkpt
£ | NoFaulis ABFT PeriodicCkpt mmmm I "
L ‘
o . e ensnEE lIIIIIII I
0.4
0.35 |
0.3 F
0.25 |
)
g 02 PeriodicCkpt ——
Bi-PeriodicCkpt
015 F ABFT PeriodicCkpt «®-
0.1 |
0.05 |
t &

0 i
1k 10k 100k M
a=0.55 a=0.8 Nodes a=0.92 a=0.975

Exascale machine: same comp increase
Memory per component remains constant
Problem size increases (O(\/n): matrix based)
uat n=10° 1 day is O(1/n)

C (=R) at n=10°is 1m, independent of n (O(1))
80% in library, 20% in application

VeloC: Very Low Overhead Transparent
Multilevel Checkpoint/Restart

Franck Cappello
Bogdan Nicolae

IcLd > Lr
IN\ID\/ATIVE

CON\PUI’ING LABOFU' TCF%'Y
t UNIVERSITYof TENNESSE

Algorithm Based Fault Tolerance (ABFT)

Takes advantage of existing mathematical relationship(s)

* Introduced (cheaply, if possible) by ABFT

KH Huang & Jacob Abraham, ABFT for Matrix Operations, IEEE Trans.
Computers. 01/1984 for systolic array

]]

Matrix extended to contain
additional information.

* Extra column or row

contains checksum.

Matrix algorithm designed to
operate on the data and the
encoded checksum.

* Checksum invariant during

the course of the algorithm.

A

- GTA -

xlB BG]=

AB ABG

' G'AB G'ABG |

* No checkpoint needed. GT] GTA and B(G are the check sums.

What is the status of FT in MPI 3.0?

* Total denial

« “After an error is detected, the state of MPI is undefined. An MPIl implementation is free to allow MPI
to continue after an error but is not required to do so.“

» Two forms of management

* Return codes: all MPI functions return either MPI_SUCCESS or a specific error code
related to the error class encountered (eg MPI_ERR_ARG)

« Error handlers: a callback automatically triggered by the MPI implementation before
returning from an MPI function.

Error Handlers

« Can be attached to all objects allowing data transfers:
communicators, windows and files

 Allow for minimalistic error recovery: the standard suggests only non-MPI related
actions, and no collective operations

 All newly created MPI objects inherit the error handler from their parent
« A global error handler can be specified by associating an error handler to MPI_COMM_WORLD right after MPI_Init

typedef void MPI_Comm_errhandler_function (MPI_Comm *, int *, ...);
(errh, errhandler_fct);

(comm, errh);
« Attach a declared error handler to a communicator

* Newly created communicators inherits the error handler that is associated with their parent
« Predefined error handlers:

 MPI_ERRORS_ARE_FATAL (default)
 MPI_ERRORS_RETURN

—
Requirements for MPI standardization of FT

- Expressive, simple to use e
« Support legacy code, backward compatible Appllcatlon
« Enable users to port their code simply

« Support a variety of FT models and approaches

« Minimal (ideally zero) impact on checkpoint/ l Uniform
failure free performance Restart Collectives

* No global knowledge of failures
* No supplementary communications to maintain

global state FAIEURESACKS SREVOKEN

« Realistic memory requirements SHRINK | AGREE
« Simple to implement

« Minimal (or zero) changes to existing functions
« Limited number of new functions
« Consider thread safety when designing the API

Minimal Feature Set for a Resilient MPI

 Failure Notification

 Error Propagation Application
» Error Recovery

Not all recovery strategies Chzekoaint/ | Ugliforns
require all of these features, Restart M collectivesll OQUETS
that’s why the interface splits

notification, propagation and
recovery.

FAIEURETACKS FREVOIKES
SHRINKSFAGREE

ULFM is not a recovery strategy, but a
minimalistic set of building blocks for VP
Implementing complex recovery
strategies.

Failure Notification

 MPI stands for scalable parallel applications it would be
unreasonable to expect full connectivity between all peers

* The failure detection and notification @ o
should have a neighboring scope: o Y/, r
only processes involved in a TRSIEE T
communication with the failed process SAL® Ty

might detect the failure @"”“g%

« But at least one neighbor should be informed avout a 1anure

« MPI_Comm_free must free “broken” communicators and
MPI_Finalize must complete despite failures.

Error Propagation

 What is the scope of a failure? Who should be notified about?

 ULFM approach: offers flexibility to allow the library/application
to design the scope of a failure, and to limit the scope of a

failure to only the needed participants

« eg. What is the difference between a Master/Worker
and a tightly coupled application ?

* |n a 2d mesh application how many nodes
should be informed about a failure?

Error Recovery

» What is the right recovery strategy?
» Keep going with the remaining processes?

» Shrink the living processes to form a new consistent
communicator?

* Spawn new processes to take the place of the failed ones?

* Who should be in charge of defining this survival strategy? What
would be the application feedback?

Part rationale, part examples

ULFM MPI API, CONTINUING THROUGH ERRORS

Bye bye, world

See 00.noft.c

int main(int argc, char xargvl[])

{
int rank, size;
MPI_ Init(,);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI Comm_size(MPI_COMM_WORLD, &size); Injecting a failure
at the highest
(rank == (size-1)) raise(); rank processor

MPI Barrier (MPI_COMM_WORLD);
printf(, rank, size);

MPI_Finalize();

 This program will abort (default error handler)
« What do we need to do to make if fault tolerant?

See gO01.err_returns.c

Bye bye, world, but orderly

int main(int argc, char *xargvl[]) See Ol.err_returns.c

{

int rank, size, rc, len; We can get a

MPI_Init());
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size); Errors are not
fatal anymore:
return an error
code instead

MPI_Comm_set_errhandler (MPI_COMM_WORLD,
MPI_ERRORS_RETURN) ;

(rank == (size-1)) raise(); _
rc = MPI_Barrier(MPI_COMM_WORLD); collect the error code in rc

MPI_Error_string(rc, errstr, &len);
printf(

rank, size, errstr);

All non-faulty
processes
survive and print
the success or
error, as
reported from
MPI_Barrier

MPI Finalize();

» Using only MPI-2 at the moment

Handling errors separately

See g02.err_handler.c
static void verbose_errhandler(MPI_Commx comm, 1ntx err,

char errstr[MPI_MAX_ERROR_STRING];
We can pack all error

MPI_Error_string(xerr, errstr, &len); management in an

printf(_ “error handler”
rank, size, errstr);

main(int argc, char xargv[]) { Create an “errhandler”
object from the C
function, and attach it

MPI_Comm_create_errhandler(verbose_errhandler, to the communicator
&errh);
MPI_Comm_set_errhandler (MPI_COMM_WORLD,
errh);

MPI_Errhandler errh;

MPI_Barrier(MPI_COMM_WORLD); No need to collect rc anymore ©

printf(, rank, size);

e Still using only MPI-2

What caused the error?

See 02.err_hander.c

ULFM is an extension to the MPI standard

static void verbose_errhandler (MPI_Commx pcomm, intx perr, ...) {
MPI_Comm comm = skpcomm;

int err = xperr; This is an “MPI error
code”

int .., eclass;

Convert the “error code”
to an “MPI error class”

MPI_Error_class(err, &eclass);

(MPIX_ERR_PROC_FAILED != eclass) {

MPI_Abort(comm, err);

MPIX_ERR_PROC_FAILED: a process
failed, we can deal with it.
Something else: ULFM MPI return the error
but it still may be impossible to recover; in
this app, we abort when that happens

« ULFM defines new error classes: ¢ All other errors still have MPI-2
« After these errors, MPI can be repaired séma ntiC

May or may not be able to continue after it has
been reported

Integration with existing mechanisms

* New error codes to deal with failures
: report that the operation discovered a newly dead process. Returned
from all blocking function, and all completion functions.

: report that a non-blocking MPI_ANY_SOURCE potential
sender has been discovered dead.

: @ communicator has been declared improper for further communications.
All future communications on this communicator will raise the same error code, with the exception of
a handful of recovery functions

e Is that all?
« Matching order (MPI_ANY_SOURCE), collective communications

Who caused the error?

 Discovery of failures is local (different processes may know of
different failures)

(comm)

« This local operation gives the users a way to acknowledge all locally notified failures on comm. After the
call, unmatched MPI_ANY_SOURCE receive operations proceed without further raising
MPI_ERR_PROC_FAILED_PENDING due to those acknowledged failures.

(comm, &grp)

« This local operation returns the group grp of processes, from the communicator comm, that have been
locally acknowledged as failed by preceding calls to MPI_COMM_FAILURE_ACK.

 Employing the combination ack/get_acked, a process can obtain
the list of all failed ranks (as seen from its local perspective)

MPI_Comm_failure_get_acked

 Local operation returning the group of failed processes in the
associated communicator that have been locally acknowledged

 Beware: All calls to between a
set of return the same set of failed
Processes

Who caused the error

Still in 02.err_handler.c

19 static void verbose_errhandler(MPI_Commx pcomm, intx perr,

can) o

20 MPI_Comm comm = xpcomm; Move the “mark” in the
known failures list

35 MPIX_Comm_failure_ack(comm);

36 MPIX_Comm_failure_get_acked(comm, &group_f); Get the group of marked

37 MPI_Group_size(group_f, &nf); .
38 MPI_Error_string(err, errstr, &len); failed processes

39 printf(
40 rank, size, errstr, nf);
41

Who caused the error

Still in 02.err_handler.c

19 static void verbose_errhandler(MPI_Commx pcomm, intx perr,

can) o

20 MPI_Comm comm = xpcomm; Move the “mark” in the
known failures list

35 MPIX_Comm_failure_ack(comm);

36 MPIX_Comm_failure_get_acked(comm, &group_f); Get the group of marked
37 MPI_Group_size(group_f, &nf);
38 MPI_Error_string(err, errstr, &len);

failed processes

39 printf(

40 rank, size, errstr, nf);

41

42 ranks_gf = (intx)malloc(nf *x sizeof(int));

43 ranks_gc = (intx)malloc(nf *x sizeof(int)); :
A4 MPI_Comm_group(comm, &group_c); Translate the failed group

45 for(i = 0; i < nf; i++) member’s ranks, in comm

46 ranks_gf[i] = i;

47 MPI_Group_translate_ranks(group_f, nf, ranks_gf,
48 group_c, ranks_gc);

49 for(i = 0; 1 < nf; i++)

50 printf(, ranks_gclil);
51 printf();
52 }

Insulation from irrelevant failures

: See 03.undisturbed.c
double myvalue, hisvalue=NAN;

sendrecv
myvalue = rank/(double)size;
if(rank%2) ¢ ’
= ((rank+1)<size)? rank+1: MPI_PROC_NULL;
= rank-1; A
== (size/2)) raise(;
s
MPI_Sendrecv(&myvalue, 1, MPI_DOUBLE, peer, 1, —>
&hisvalue, 1, MPI_DOUBLE, peer, 1,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);
—

if(peer != MPI_PROC_NULL)

printf(
rank, size, peer, hisvalue);

What happens?

Continuing through errors

 Error notifications do not break < In a Master-Worker example, we
MPI can continue w/o recovery!

* More errors may be raised if the op cannot

App can continue to communicate on the « Master sees failed worker

communicator « Resubmit the lost work unit onto another worker

. : * Quietly continues
complete (typically, most collective ops are

expected to fail), but p2p between non-failed « Same Story with Stencil pattern!
processes works - Exchange with next neighbor in the same direction
instead

Recv (ANY)
Detected W1

Master

:vv; N\ 3 /7\ (A /\

. —

Insulation from irrelevant failures

See 03.undisturbed.c

double myvalue, hisvalue=NAN;
myvalue = rank/(double)size;
rank%2)
= ((rank+1)<size)? rank+1: MPI_PROC_NULL;

rank-1;

== (size/2)) raise(

MPI_Sendrecv(&myvalue, 1, MPI_DOUBLE, peer, 1,

&hisvalue, 1, MPI_DOUBLE, peer, 1,

MDT _COQMM_WNORI N MDT _CTATLIC _TCANNARFE) =

bash$ $ULFM_PREFIX/bin/mpirun -np 10 03.undisturbed

Rank O / 10: value from 1 is 0.1 .

Rank 1 / 10: value from O is O Sendrecv between pairs of
Rank 3 / 10: value from 2 is 0.2 live processes complete w/0

Rank 2 / 10: value from 3 is 0.3 error. Can post more, it will

Rank 6 / 10: value from 7 is 0.7 | Sendrecy failed at rank
Rank 7 / 10: value from 6 is 0.6 work too!

Rank 9 / 10: value from 8 is 0.8 4 (5 is dead)
Rank 8 / 10: value from 9 is 0.9 Value not updated!
Rank 4 / 10: Notified of error MPI_ERR_PROC_FAILED: Process Failure. 1 found dead: { 5 }

Rank 4 / 10: value from 5 is nan

Dealing with MPI_ANY_SOURCE

See 08.err_any_source.c

(0!=rank) {

MPI_Send(&rank, 1, MPI_INT, ©, 1, MPI_COMM_WORLD); _
Assume a process dies before

{ sending the message

printf();
(1 =1; 1< size-nf;) {
rc = MPI_Recv(&unused, 1, MPI_INT, MPI_ANY_SOURCE, 1,

MPI_COMM_WORLD, &status); -
(MPI_SUCCESS == rc) { No specified source

printf(, unused, 1i);

i++

{

Dealing with MPI_ANY_SOURCE

See 08.err_any_source.c

(0 1!=rank) {

MPI_Send(&rank, 1, MPI_INT, ©, 1, MPI_COMM_WORLD); .
Assume a process dies before

{ sending the message
printf()i

(1 =1; 1 < size-nf;) {

rc = MPI_Recv(&unused, 1, MPI_INT, MPI_ANY_SOURCE, 1, No specified source, the

Lat ; - - -
MPI_COMM_WORLD, (&SMLPI ”SSU)C(_ESC o) g failure detection is

printf(, unused, 1i); homogeneous

1++;

{ MPIX_ERR_PROC_FAILED_PENDING on
every node posting an ANY_SOURCE.

« If the recv uses ANY_SOURCE: « New error code MPIX_ERR_PROC_FAILED_PENDING:
. Any failure in the comm is potentially a failure of the the operation is interrupted by a process failure, but is
matching sender! still pending
- The recv MUST be interrupted « |f the application knows the receive is safe, and the

matching order respected, the pending operation can

* Interrupting non-blocking ANY_SOURCE could change be waited upon (otherwise MPI_Cancel)

matching order...

MPI_Comm_failure_ack

» Local operations that acknowledge all locally notified failures
« Updates the group returned by MPI_COMM_FAILURE_GET_ACKED

« Unmatched MPI_ANY_SOURCE that would have raised
MPI_ERR_PROC_FAILED or MPI_ERR_PROC_FAILED_PENDING
proceed without further exceptions regarding the acknowledged
failures.

« MPI_COMM_AGREE do not raise MPI_ERR_PROC_FAILED due to
acknowledged failures

* No impact on other MPI calls especially not on collective communications

Lets keep it neat and tidy

STABILIZING AFTER AN ERROR

Regrouping after error

See q04.if_error.c

(np+rank-1)%np;
(np+rank+1)%np;

1< 10; i++) A

MPI_Sendrecv(sarray, COUNT, MPI_DOUBLE, right, 0,
rarray, COUNT, MPI_DOUBLE, left , 0,
fcomm, MPI_STATUS_IGNORE);

if(rc !'= MPI_SUCCESS) {

goto cleanup;

« Run qO4.if_error with 5 processes. What happens?
 How can it be fixed ?

Regrouping after error

Recv(P,): Failed
P, calls Revoke

» P1 fails

» P2 raises an error and stop Plan A to enter application recovery
Plan B

* pbut P3..Pn are stuck in their posted recv
« We need a way to “unstuck” them. Enter Revoke ©

* P3..Pnjoin P2 in the recover

MPI_Comm_revoke

« Communicator level failure propagation

* The revocation of a communicator completes all pending local
operations

« A communicator is revoked either after a local MPI_Comm_revoke or any MPI call raise an exception of
class MPI_ERR_REVOKED

* Unlike any other concept in MPI it is not a collective call but has a
collective scope

« Once a communicator has been revoked all non-local calls are
considered local and must complete by raising MPI_ERR_REVOKED

« Notable exceptions: the recovery functions (agreement and shrink)

Regrouping for Plan B

e —— | b

if(rc !'= MPI_SUCCESS) {

MPIX_Comm_revoke(fcomm);
goto cleanup;

See 04.if_error.c

About non-uniform error reporting

value = rank/(double)size; See 05.err_coll.c

(rank == (size/4)) raise();
MPI_Bcast(&value, 1, MPI_DOUBLE, ©, MPI_COMM_WORLD);

(value !=) {
printf(

rank, size, 0, value);

Bcast from O is
disrupted by a
failure

» What processes are going to report an error ?
* Is any process going to display the message

line 41 7
« What if we do an Allreduce instead?

About non-uniform error reporting

See 05.err_coll.c

value = rank/(double)size;
Bcast from O is

disrupted by a
failure

(rank == (size/4)) raise();
MPI_Bcast(&value, 1, MPI_DOUBLE, ©, MPI_COMM_WORLD);

(value !'=) {
printf(
rank, size, 0, value);

 Are all processes going to report an error ?

* |[s any process going to display the message line
41 7

bashS SULFM_PREFIX/bin/mpirun -np 5 05.err_coll -v
Rank 3 / 5: Notified of error MPI_ERR_PROC_FAILED: Process Failure. 1 found dead:
{1}

Rank 3 / 5+ _value from @ is wrong: 0.6

MPI_Bcast internally uses 0 is the root, it Bcast failed at rank 3,
a binomial tree topology sends to 1, but value has not been
3 (a leaf) was supposed to doesn’t see the updated!
receive from 1... failure of 1

Issue with communicator creation

rc=F,newcomm="27?7

0]
1
, rc=S
Recv(src=0, newcomm)
, rc=S

MPI_Comm_dup w/failure at rank 1 during the operation

« MPI_Comm_dup (for example) is a collective

» Like MPI_Bcast, it may raise an error at some rank and not others
« When rank O sees MPI_ERR_PROC_FAILED, newcomm is not created correctly!
« At the same time, rank 2 creates newcomm correctly

« If rank 2 posts an operation with O, this operation cannot complete (O cannot post the
matching send, it doesn’t have the newcomm)

 Deadlock!

W 43

Safe commmunicator creation

int ft_comm_dup(MPI_Comm comm, MPI_Comm xnewcomm) <{
int rc;
int flag;

rc = MPI_Comm_dup(comm, newcomm); We need the flag to
flag = (MPI_SUCCESS==rc);

have a global

(rc == MPI_SUCCESS) {
MPI_Comm_free(newcomm);
rc = MPIX_ERR_PROC_FAILED;

See q06.err_comm_dup.c

MPI_Comm_agree

» Perform a consensus between all living processes in the
associated communicator and consistently return a value and

an error code to all living processes

* Upon completion all living processes agree to set the output
integer value to a bitwise AND operation over all the contributed
values
« Also perform a consensus on the set of known failed processes (!)

 Failures non acknowledged by all participants keep raising
MPI_ERR_PROC_FAILED

Safe commmunicator creation

int ft_comm_dup(MPI_Comm comm, MPI_Comm xnewcomm) <{
int rc;
int flag;

rc = MPI_Comm_dup(comm, newcomm);
flag = (MPI_SUCCESS==rc);

MPIX_Comm_agree(comm, &flag);
if('flag) {
if(rc == MPI_SUCCESS) {
MPI_Comm_free(newcomm);
rc = MPIX_ERR_PROC_FAILED;
}
}

return rc;

See 06.err_comm_dup.c

« Solution: MPI_Comm_agree

« After ft_comm_dup, either all procs have created newcomm, or all procs
have returned MPI_ERR_PROC_FAILED

« Global state is consistent in all cases

Benefits of safety separation

20 See 07.err_comm_grid2d
21

22

23

24 int ft_comm_grid2d(MPI_Comm comm, int p, MPI_Comm s*rowcomm, MPI_Comm *xcolcomm)

30 rcl MPI_Comm_split(comm, rank%p, rank, rowcomm);
31 rc2 = MPI_Comm_split(comm, rank/p, rank, colcomm);
32 flag = (MPI_SUCCESS==rcl) && (MPI_SUCCESS==rc2);
33 MPIX_Comm_agree(comm, &flag); _
34 if(!flag) { « PxP 2D process grid
35 if(rcl == MPI_SUCCESS) { :

— - A t
36 MPI_Comm_free(rowcomm); CJﬁﬁﬁﬁﬁigﬁﬁZ?“”” o
37 ¥
38 if(rc2 == MPI_SUCCESS) {
39 MPI_Comm_free(colcomm);
40 } o
41 return MPIX_ERR_PROC_FAILED; We Agree.orjly ot
47 1 « Better amortization of the cost
43 return MPI_SUCCESS: over multiple operations
44 }

« A row communicator
« A column communicator

Can we fix it? Yes we can!

FIXING THE WORLD

Full capacity recovery

« After a Revoke, our original comm is unusable. Can we
just create a new one ?

« We can Shrink: that create a new comm, but smaller

« Can be used to do collective and p2p operations, fully functional

« Some application need to restore a world the same size

« And on top of it, they want the same rank mapping

Iﬂw 50

MPI_Comm_shrink

» Creates a new communicator by excluding
from the parent communicator
* It completes an agreement on the parent communicator

« Work on revoked communicators as a mean to create safe, globally
consistent sub-communicators

* Absorbs new failures, it is not allowed to return
MPI_ERR_PROC_FAILED or MPI_ERR_REVOKED

P1
P2
P3
Pn

Respawning the

int main(int argc, charx argv[]) {

MPI_Comm_get_parent(&world);
(MPI_COMM_NULL == world) {

MPI_Comm_dup(MPI_COMM_WORLD, &world);

{

MPIX_Comm_replace(MPI_COMM_NULL, &world);

joinwork;

MPIX_Comm_replace(comm, *newcomm)

deads

See 10.respawn

 Avoid the cost of having
Idling spares

« We use MPI_Comm_spawn to launch
New processes

« We insert them with the right rank in a
new “world”

Summary of new functions

(comm)
Resumes matching for MPI_ANY_SOURCE
(comm, &group)

« Returns to the user the group of processes acknowledged to have failed

(comm)

— Non-collective collective, interrupts all operations on comm
(future or active, at all ranks) by raising MPI_ERR_REVOKED

(comm, &newcomm)

— Collective, creates a new communicator without failed
processes (identical at all ranks)

(comm, &mask)

— Collective, agrees on the AND value on binary mask,
ignoring failed processes (reliable AllReduce), and the
return core

UOIEOIION

) <

uonesedold

> <

K19N0D20Y

Transaction-like approaches

#define TRY BLOCK(COMM, EXCEPTION) \
dO{ \ °
int _ flag = oxffffffff; \
__stack_pos++; \
EXCEPTION = setjmp(&stack_jmp_buf[__stack_posl);\
flag &= ~EXCEPTION; \

if(@ == EXCEPTION) {

#define CATCH BLOCK(COMM) \
__stack_pos—; \
__stack_in_agree = 1; /% prevent longjmp */ \
MPIX_Comm_agree(COMM, & flag); \

__stack_in_agree = 0; /*x enable longjmp */ \ o
¥ \
if(oxffffffff != _ flag) {
#define END BLOCK() \ .

} } while (0);

#define RAISE(COMM, EXCEPTION) \
MPIX_Comm_revoke(COMM); \
assert(@ '= (EXCEPTION)); \
if(!__stack_in_agree) \

longjmp(stack_jmp_buf[__stack_posl],
(EXCEPTION)); /* escape */

TRY_BLOCK setup the
transaction, by setting a
setimp point and the main if

CATCH_BLOCK complete the if
from the TRY_BLOCK and
Implement the agreement
about the success of the work
completion

END_BLOCK close the code
block started by the
TRY_BLOCK

RAISE revoke the
communicator and if
necessary (if not raised from
the agreement) longimp at the
beginning of the TRY_BLOCK
catching the if

Transaction-like approaches

/* save datal to be used in the code below *x/ o Ske|eton f()r a 2 |eve|

transactionl:

(MPI_COMM_WORLD, exception) { = transaction with
/* do some extremely useful work */ checkpoint approach
/* save data2 to be used in the code * Local checkpoint can be used
below */ to handle soft errors
transaction2: | » Other types of checkpoint can
" (newcomm, exception) { be used to handle hard errors
o « No need for global checkpoint
*x d t 1 ful k ’
§ /% do more extremely useful work x/ only save what will be modified
BES! (newcomm) { during the transaction
> /* restore data2 for transaction 2 x .
N> goto transaction2; Generic scheme that
" v can work at any
} (MPI_COMM_WORLD) £
/* restore datal for transaction 1 x/ depth
goto transactionl;

} () -

—
Transaction-like approaches

» A small example doing a simple
barrier

 We manually kill a process by
brutally calling exit

« What is the correct or the
expected output?

2D Heat Propagation (Laplace eq.)
* The root of many types of scientific
challenges

« The implementation used here is however trivial, and only serve
teaching purposes

* We imagine a NxM points space
' +U!L L +UL,) represented as a matrix and distributed

i+1 i, i,j+l1

1
n+l n
Uy, = 1 (Ui—l,j +U

i1 on a PxQ grid of processes
© ? © « Each process has (N/P) x (M/Q) elements
i-1,j | i+, To facilitate the update each process will surround the part of
© > © the space she owns with a ghost region, that role is to hold the

data from the last iteration from the neighbor on the direction

2D Heat Propagation (Laplace eq.)

2D Heat Propagation (Laplace eq.)

1. We need to be able to break the
iterations and jump out of the loop

2D Heat Propagation (Laplace eq.)

1. We need to be able to break the
iterations and jump out of the loop

2. We need to be able to checkpoint
the local at regular intervals

2D Heat Propagation (Laplace eq.)

1. We need to be able to break the
iterations and jump out of the loop

2. We need to be able to checkpoint
the local at regular intervals

3. We need to retrieve the data from
the neighbors, coordinate about
the iteration and restart the
computation

2D Heat Propagation (Laplace eq.)

1. We need to be able to break the
iterations and jump out of the loop

2. We need to be able to checkpoint
the local at regular intervals

3. We need to retrieve the data from
the neighbors, coordinate about
the iteration and restart the
computation

2D Heat Propagation (Laplace eq.)

1. We need to be able to break the
iterations and jump out of the loop

2. We need to be able to checkpoint
the local at regular intervals

3. We need to retrieve the data from
the neighbors, coordinate about
the iteration and restart the
computation

Beyond examples, what people are doing with it

USER’S RECOVERY STORIES

User Level Failure Mitigation
User Adoption ;

Fenix Framework/S3D

0.35 -
communication 3.8TB/s
0.3 garbage collection 16.8TB/s
0.6TB/s 2.4TB/s

= 0.25 | 1.2TB/s 9.6TB/s
D
£ 0.2 |
IS
‘S
g 0.15 - 0.2TB/s
D
5 01 | 0.1TB/s

; 0.7TB/s

0.05 - L ! = !
- - -
o —
7 4 8 7 -3 6 7
000 9797 O09¢ S00p 7562532755 9400, 25000250047
Core count

Fig. 3. Checkpoint time for different core counts (8.6 MB/core). The numbers
above each test show the aggregated bandwidth (the total checkpoint size over
the average checkpoint time).

Domain Decomposition PDE

mean of rho at t=0.06

|

(b) few failures

mean of rho at t=0.06

20.0
17.5
15.0
12.5
10.0
7.5
5.0
2.5
0.0

(a) failure-free

20.0
17.5
15.0
12.5
10.0
7.5
5.0
2.5
0.0

MapReduce

MapReduce Job

. N
Distributed h

Master

Task :
Balancer :

Fortran CoArrays “failed (Faiure viar) (raiore iar) |

. ”
IMma geS L MapReduce Process L MapReduce Process

uses ULFM-RMA to support -, - "
Fortran TS 18508 (

SAP In-memory distributed
database

PHALANX
Elastic X10

Distributed
Master
Task
Balancer

Figure 2: The architecture of FT-MRMPI.

X10 Language

M X10 over Sockets (IP over Infiniband)

14
M X10 over ULFM (Infiniband)

12

10

8

: 6

4

20.0 2
17.5

0

16

Time in seconds

E kg/m?>

159 Non Resilient Resilient no failure Resilient with a failure

12.5 (3 checkpoints + 1 restore)

10.0

7.5 The performance improvement due to using ULFM
2‘5’ v1.0 for running the LULESH proxy application [3]
0.0 (a shock hydrodynamics stencil based simulation)

running on 64 processes on 16 nodes with

(c¢) many failures

Figure 5. Results of the FT-MLMC implementation for three different failure scenarios.

And many more...

Use cases: Chekpoints w/Fenix in S3D

« S3D is a production, highly
parallel method-of-lines

solver for PDEs

» used to perform first-principles-based
direct numerical simulations of
turbulent combustion

« S3D rendered fault tolerant
using Fenix/ULFM

« 35 lines of code modified
in S3D in total!

« Order of magnitude
performance improvement
in failure scenarios

+ thanks to online recovery and in-
memory checkpoint advantage over
I/0 based checkpointing

* Injection of FT layer:
addition of a couple of
Fenix calls

FRAMEWORKS USING ULFM
LFLR, FENIX, FTLA, Falanx

35 T T —
>
=3 r 3N
30 = $5= ¢
S $3° §3
o o o
H Ty
— 25 - < 0 10000 20000
= = @
= S . —_—
> © ES 137 “lost Checkpoints
— o - L [Wy ot
= 20 3 “ 3 2
= s 5 E. 7 RN
< s < = 3 "l Prot. recovery
E - £ BT Bz
-8 15 = S e ata rozovery
2 Z 3 Fbres
E 10 D - o 0 1900
5 . .
Exploring automatic, online
0
47 96 189 9600

MTBF (s)

Fenix_Checkpoint_Allocate mark a memory segment
(baseptr,size) as part of the checkpoint.

Fenix_Init Initialize Fenix, and restart point after a
recovery, status contains info about the restart mode
Fenix_Comm_Add can be used to notify Fenix about
the creation of user communicators
Fenix_Checkpoint performs a checkpoint of marked
segments

16128 «— Recovery + rofback overbgad — 4388 19283 6025
30000 40000 50000 62000 70000 30000 ESADD
20 ' By e 00 600

Execution wal tme (s)

Image courtesy of the authors, M.Gamell, D.Katz, H.Kolla, J.Chen, S.Klasky, and M.Parashar.
failure recovery for scientific applications at extreme scales.

In Proceedings of SC '14

0.35
communé():ation 3.8TB/s
memcpy
0.3 4 garbage collection 16.8TB/s
0.6TB/s 2.4TB/s
D 0.25 1.2TB/s 9.6TB/s
(]
E 0.2
<
‘©
g 0154 0.2TB/s
(]
< 0.1TB/s
&) A
01 0.7TB/s
0.05 -
ol

- — T. — T — T. . — T — T.— T. — T — T

7000 279> 4096‘ 8000 75625 3276\8 6\4000 795000250047
Core count

Fig. 3. Checkpoint time for different core counts (8.6 MB/core). The numbers
above each test show the aggregated bandwidth (the total checkpoint size over
the average checkpoint time).

Use cases: Languages Resilient X10

X10 is a PGAS programming language

* Legacy resilient X10 TCP based

try{ /*Task A*/

. at (p) { /*Task B*/
Happens Before Invariance

Principle (HBI):

Failure of a place should not alter
the happens before relationship b3
between statements at the
remaining places.

D;

finish { at (q) async { /*Task C*/ } }

Place r

} catch(dpe:DeadPlaceException){ /*recovery steps*/}

Place p | Place g
' Finish .

| {@q async Ciy

By applying the HBI principle, Resilient X10 will ensure that statement D executes after Task C finishes, despite the loss of the

synchronization construct (finish) at place p

MPI operations in resilient X10 runtime

* Progress loop does MPI_lprobe, post heeded recv according to
probes

» Asynchronous background collective operations (on multiple
different comms to form 2d grids, etc).

Recovery

* Upon failure, all communicators recreated (from shrinking a
large communicator with spares, or using MPI_COMM_SPAWN
to get new ones)

* Ranks reassigned identically to rebuild the same X10 “teams”

Injection of FT layer

* Unnecessary, x10 has a runtime that hides all MPI from the
application and handles failures internally

Source: Sara Hamouda, Benjamin Herta, Josh Milthorpe, David Grove, Olivier Tardieu. Resilient X10 over Fault Tolerant MPI. In : poster

session SC’15, Austin, TX, 2015.

Time in seconds

16
m X10 over Sockets (IP over Infiniband)

m X10 over ULFM (Infiniband)

14

12

10

(o2}

N

N

Resilient no failure Resilient with a failure
(3 checkpoints + 1 restore)

Non Resilient

The performance improvement due to using ULFM
v1.0 for running the LULESH proxy application [3]
(a shock hydrodynamics stencil based simulation)
running on 64 processes on 16 nodes with

Use cases: Non traditional HPC
Hadoop over MPI s .:

. : MapReduce Job '

* Non-HPC workflow usually do not consider (—— B N
. Distributed Distributed

MPI because it lacks FT 1| -) e e)|
Judicael A. Zounmevo, Dries Kimpe, Robert Ross, and Ahmad Afsahi. 2013. Using MP! in high- 1| Runner 1l Runner f
performance computing services. In Proceedings of the 20th European MPI Users' Group Meeting : Balancer Balancer :
fIIEEEIrEol\élgll §33 é(SJI_\g,SITJeW York, NY, USA, 43-48.SE), 2013 IEEE 16th International Conference on. L) C—)Failure Hdir L) CﬁFailure Hdir

« ULFM permits high performance exchange in non-HPC runtimes :(MapReduce Process) | MapReduce Process |:

(like Hadoop) T T 3

T MR-MP| ——
g 1.2 Checkpoint/Restart ——— |
i= o Detect/Resume (WC) ===
S . Detect/Resume (NWC)
g

0.8 . .
S Figure 2: The architecture of FT-MRMPI.
o 0.6 i
3
& 04 i
£
s 0.2 i
=

(6]

32 64 128 256 512 1024 2048
Number of Processes

Figure 8: Normalized job comple-
tion time of failed and recovery
rumn.

SAP Data bases

Repair Routine
called

\

v

Acknowledgement

v

Get Group of
Failed Processes

N

Calculate new
Processes

v

Restore Data

v

Shrink
Communicator

v

Return to

Algorithm

Figure 3.2: Repair Routine

Database Systems

_ Fehlertolerante Gruppenkommunikations Algorithmen fur verteilte

Datenbanksysteme

system

« Implemented over MPI for high performance

applications

Use cases: Non traditional HPC

« SAP is a production database < SAP with ULFM

« Collective operations consistency protected by
agreements

« Database Request continues in-place after an
error

» Legacy: Fault tolerance based on full-restart

Source: Fault Tolerant Collective Communication Algorithms for Distributed

Master-Thesis von Jan Stengler aus Mainz April 2017

@

LY

z
? TPCH Q) Restant
L) w=TPCH Q) with Favt Toletance
S TRCH Q) Optrioed
» -

Figure 5.24: Optimization: Runtime of TPC-H Benchmark Query 3 with Failure in Phase 4 (1GB Data per

Process) L

CONCLUSION

P1
P2
P3
Pn

ULFM: support for all FT types

1seogq

* You application is SPMD
« Coordinated recovery
« Checkpoint/restart based
« ABFT

« ULFM can rebuild the
same communicators as
before the failure!

Send (W2,T1)

Resubmit

Master

Send (W1,T1) Recv (ANY)
Submit T1 Detected W1

w1
W2
Whn

* Your application is
moldable
« Parameter sweep
« Master Worker
« Dynamic load balancing

« ULFM can reduce the cost
of recovery by letting you
continue to use a
communicator in limited
mode (p2p only)

m 72

Other mechanisms

« Supported but not covered in this tutorial: one-sided

communications and files

- Files: MPI_FILE_REVOKE
* One-sided: MPI_WIN_REVOKE, MPI_WIN_GET_FAILED

 All other communicator based mechanisms are supported via
the underlying communicator of these objects.

What is the right approach?

« Bad/good news: there might not be A right approach

» An efficient, scalable and portable approach is certainly a mix of
multiple approaches

« Algorithm specific approaches seems the most efficient, but they have additional requirements from
the programming paradigms

« The development cost should be put in balance with the ownership cost

* We need fault tolerance support from the programming
paradigms

« The glue to allow composability if as important as the approaches themselves

 |Is ULFM that glue?

« ULFM is a building box, most developers are not supposed to use it directly

* |Instead use domain specific approaches, proposed by the domain scientists as a
portable library implemented using the ULFM constructs

More info, examples and resources
available

http://fault-tolerance.org

icLor

INNIOVATIVE

COMPUTING LABORATORY
ou UNIVERSITYo TENNESSEE

ULFM MPI: Software Infrastructure

Performance companson between ULFM Open MPI and Open MPI master, NERSC Cori Ping Pong (uGNI, 2 nodes)

Implementation in Open MPI, . il
MPICH available T
No performance impact B
Open MPIULFM 2.0 status & L 44044 ‘ &
« In sync with Open MPI master (2 weeks ago) 5 : 5 ; S - 5 5 = 2 5 o
New features e
« SC’16 failure detector integrated (threaded detector,

RDMA heartbeats optimization, etc.) Perormance comparison between ULFM Open MPI and Open MPI master; NERSC Cori Ping Pong (uGNI, 2 nodes)

PMIx notifications taken into account 10 adant

Fault tolerance with 1-copy CMA shared mem : o 75" *
Fault tolerance with Non-blocking collective § ,
operations T *

Bandwidth

Fail gracefully when failure hit during VP10 § °
Fail gracefully when failure hit during VIPI-RM, # : * ?
0
16384 2768

Slurm, PBS, support improved
192 6553 131072 262144 524258 1048576 2097182 4194304

Tested on Cori, Edison, Titan, Summit, etc. Massage Size (bytes)
Failure free performance bump!

Scala ble Fa | I u re f = supported number of overlapping failures

Stabilization Time T(f) = duration of the

DeteCto r longest sequence of non stable
®

configurations assuming at most f

@ L @ overlapping faults
s A Broadcast Time B(n) = 87 logn
“‘ | f(f + 1)
Q. ' O T(f) < f(f+ 10+ fr+ =—F—"B(n)
e o L e : T | 7 d
‘~... I/ reconnect propagate
. ar - .
Q= 7 '3+ F—>0 The broadcast algorithm can tolerate up to
v & - a . .
e A %A, |log(n) | overlapping failures, thus
4 & &
vﬁ”------"----‘-‘| * 3
e VAT & T(f) ~ O((log n)?)
. Application Timeout for suspecting a failure 2.5s /,@
" Variability w/o FT () .~ 1 T @ o
Missed n o 27 1 /! @
3l Missed & S @ \
—=— HPL, N=40,000 K> > 06| A
" §]
4 T |
g 25 [~ ‘\/'/] @ /
2,4l] N (o)
| s Dy
’ 3 ‘\@
g 23 .
—%— 1 ;all:t Bosilca, G., Bouteiller, A., Guermouche, A., Herault,
o 22 2;3'::] T., Robert, Y., Sens, P., Dongarra, J. "Failure
'19*_‘66" ‘ 1e_8; - 1e_0‘2 e » . 8faults : : Detection and Propagation in HPC systems,"
R —— "ok 1k 2k 3k 4k 5k 6k 2grizr00mputing, Salt Lake City, UT, November,

Number of cores

Scalable Revocation

Revoke Time and Perturbation in AllReduce (np=32768, OLCF Titan uGNI+CMA)
100 T T

—O— Fault Free AllReduce
Fault Free [Min:Avg+Standard Dev.]

Revoked AllReduce

1%! post-revoke AllReduce

18 post-revoke [Min:Avg+Standard Dev]
—— 2"%post-revoke AllReduce

10 F

TIME (ms)

7] SR — s e e —

0.01 . L L .
8 16 64 256 1K 4K 16K 64K

MESSAGE SIZE (Bytes)

* The underlying BMG topology is

symmetric and reflects in the revoke
which is independent of the initiator

The performance of the

sustains some
performance degradation resulting from
the network jitter associated with the
circulation of revoke tokens

After the 2nd Allreduce (approximately
1ms on 32k processes), the application
is fully resynchronized, and the Revoke
reliable broadcast has completely
terminated, therefore leaving the
application free from observable jitter.

us

Scalable Agreement

ERA Topologies (Cray XC30)

180 T ERA(fiat binaty tree) ! « Early Returning Algorithm: once the
ERA(bin/star tree) . .
140 | —— ERA(bin/bintree) 7] decision reached the local process

Open MPI Allreduce(4Bytes) :] _
—+— Cray Allreduce(4Bytes) returns, but the decided value remains

[l . N Noer available for providing to other processes
100 * The underlying logical topology
80 hierarchically adapts to reflects to
3 ; | network topology
60 ¥ g—o " ... e, SRS o TP

* |n the failure-free case the
Implementation exhibits the theoretically
proven logarithmic behavior, similar to an
optimized version of MPI_Allreduce

1k 2k 3k 4k 5k 6k
#processes

NICS Darter (Cray XC30)

How to design your own replace/spare system (not presented live)

ADVANCED CONTENT

Inside MPIX_COMM_REPLACE

See 10.respawn

if(comm == MPI_COMM_NULL) {

MPI_Comm_get_parent(&icomm);
MPI_Recv(&crank, 1, MPI_INT, 0, 1, icomm, MPI_STATUS_IGNORE) ;

Same as in spare: new
guys wait for their rank
from O in the old world

¥

else {

MPIX_Comm_shrink(comm, &scomm);
MPI_Comm_size(scomm, &ns);
MPI_Comm_size(comm, &nc);

nd = nc-ns;

if(0 ==nd) {

return MPI_SUCCESS; Spawn nd new processes

MPI_Comm_set_errhandler(scomm, MPI_ERRORS_RETURN);

rc = MPI_Comm_spawn(gargv[0], &gargv[1], nd, MPI_INFO_NULL,
, scomm, &icomm, MPI_ERRCODES_IGNORE);

Intercommunicators — P2P

On process O:
MPI_Send(buf, MPI_INT, 1, n, tag, intercomm)

 Intracommunicator e Intercommunicator

Intercommunicators

« And what’ s a intercommunicator ?

. MP
MP

. MP
. MP

- SOMe Mmore processes
- TWO groups
- one communicator

_COMM_REMOTE_SIZE(comm, size)
_COMM_REMOTE_GROUP(comm, group)

_COMM_TEST_INTER(comm, flag)
_COMM_SIZE, MPI_COMM_RANK return

the local size respectively rank

Anatomy of a Intercommunicator

- -
Group (B)

Intercommunicator

Inside MPIX_Comm_replace

rc = MPI_Comm_spawn(gargv[0], &gargv[1l], nd, MPI_INFO_NULL,
, scomm, &icomm, MPI_ERRCODES_IGNORE);
flag = (MPI_SUCCESS == rc);
MPIX_Comm_agree(scomm, &flag); Check if spawn worked

(!flag) { (using the shrink comm)
(MPI_SUCCESS == rc) {

MPIX_Comm_revoke(icomm);

MPI_Comm_free(&icomm): If not, make the spawnees
} abort with MPI_ERR_REVOKE

MPI_Comm_free(&scomm);

redo;

See 9.respawn

We need to check if spawn succeeded before proceeding further...

Intercommunicators

« MPI_INTERCOMM_MERGE(intercomm, high, intracomm)
« Create an intracomm from the union of the two groups
- The order of processes in the union respect the original one
- The high argument is used to decide which group will be first (rank 0)

high = false

high = true

Respawn 3/3

rc = MPI_Intercomm_merge(icomm, 1, &mcomm); i
rflag = flag = (MPI_SUCCESS==rc); Merge the icomm
MPIX_Comm_agree(scomm, &flag); We are back with an intra

(MPI_COMM_WORLD '= scomm) MPI_Comm_free(&scomm);
MPIX_Comm_agree(icomm, &rflag);

MPI_Comm_free(&icomm); _ _
(1(flag && rflag)) { Verify that icomm_mege

worked takes 2
redo; agreements

See 10.respawn
« First agree on the local group (a’s know
about flag provided by a’s)

« Second agree on the remote group (a’s
know about flag provided by b’s)

« At the end, all know if both flag and rflag
(flag on the remote side) is good

<+ Group (A)

<+— Group (B)

Copy an errhandler

(MPI_COMM_NULL '= comm) {
MPI_Errhandler errh;

MPI_Comm_get_errhandler(comm, &errh);
MPI_Comm_set_errhandler(*newcomm, errh);

See 10.respawn

* In the old world, newcomm should have the same error
handler as comm
- We can copy the errhandler function ©

* New spawns do have to set the error handler explicitly (no old comm to
compy it from)

Rank Reordering

MPI_Comm_rank(comm, &crank);
MPI_Comm_rank(scomm, &srank);

1f(0 == srank) {

MPI_Comm_group(comm, &cgrp);
MPI_Comm_group(scomm, &sgrp);
MPI_Group_difference(cgrp, sgrp, &dgrp);

for(i=0; i<nd; i++) {
MPI_Group_translate_ranks(dgrp, 1, &i, cgrp, &drank);

MPI_Send(&drank, 1, MPI_INT, i, 1, icomm);

See 11.respawn_reorder

Working with spares

Split the spares out of

» First use case: “world”, the work
We deploy with mpirun -np p*q+s, where s is extra processes for recovery communicator

Upon failure, spare processes join the work communicator

spare = (rank>np-SPARES-1)? MPI_UNDEFINED : 1;
MPI_Comm_split(MPI_COMM_WORLD, spare, rank, &world);

(MPI_COMM_NULL == world) {

{
MPIX_Comm_replace(MPI_COMM_WORLD, MPI_COMM_NULL, &world);

h (MPI_COMM_NULL == world); _ ,
MPI_Comm_size(world, &wnp); We will define (ourselves)

MPI_Comm_rank(world, &wrank); MPIX_Comm_replace, a
joinwork; function that fix the world

See ex3.0.shrinkspares.c

Working with spares

19 int MPIX_Comm_replace(MPI_Comm worldwspares, MPI_Comm comm, MPI_Comm
xnewcomm) {

25
26
27
28
29
30
31
32
33
34
35
36
37
38
40
42
44
45

* A look at what we need to do...

Shrink MPI_COMM_WORLD

MPIX_Comm_shrink(worldwspares, &shrinked);

MPI_Comm_set_errhandler(shrinked, MPI_ERRORS_RETURN);
MPI_Comm_size(shrinked, &ns); MPI_Comm_rank(shrinked, &srank);

if(MPI_COMM_NULL '= comm) {

MPI_Comm_size(comm, &nc);
if(nc > ns) MPI_Abort(worldwspares, MPI_ERR_PROC_FAILED);

MPI_Comm_rank(comm, &crank);

} else {

}
printf(

See ex3.0.shrinkspares.c

Assigning ranks to spares

See ex3.1.shrinkspares_reorder.c

if(MPI_COMM_NULL '= comm) {

MPI_Comm_rank(comm, &crank);

if(0 == srank) {

MPI_Comm_group(comm, &cgrp); MPI_Comm_group(shrinked, &sgrp);
MPI_Group_difference(cgrp, sgrp, &dgrp); MPI_Group_size(dgrp, &nd);

for(i=0; i<ns—(nc-nd); i++) {
if(i < nd) MPI_Group_translate_ranks(dgrp, 1, &i, cgrp, &drank);
else drank=-1;

MPI_Send(&drank, 1, MPI_INT, i+nc-nd, 1, shrinked);
}

}
} else {
MPI_Recv(&crank, 1, MPI_INT, 0, 1, shrinked, MPI_STATUS_IGNORE);

}

Inserting the spares in world

if(MPI_COMM_NULL '= comm) {

MPI_Comm_rank(comm, &crank);

MPI_Send(&drank, 1, MPI_INT, i+nc-nd, 1, shrinked);

} else {
MPI_Recv(&crank, 1, MPI_INT, 0, 1, shrinked, MPI_STATUS_IGNORE);

}

rc = MPI_Comm_split(shrinked, crank<0?MPI_UNDEFINED:1, crank, newcomm);

flag = MPIX_Comm_agree(shrinked, &flag); Sen_d’ Recv or Split CO_U|d have
MPI_Comm_free(&shrinked); failed due to new failures...
if (MPI_SUCCESS != flag) { If any new failure, redo it all

if(MPI_SUCCESS == rc) MPI_Comm_free(newcomm);
goto redo;

}
return MPI_SUCCESS;

See ex3.1.shrinkspares_reorder.c

Respawn in action: buddy C/R

MPI_Comm_get_parent(&parent); See 12.buddycr.c

(MPI_COMM_NULL == parent) {

MPI_Comm_dup(MPI_COMM_WORLD, &world);

{

app_needs_repair(MPI_COMM_NULL);
¥

setjmp(jmpenv);
(iteration < max_iterations) {

(0 == 1iteration%2) app_buddy_ckpt(world);
iteration++;

* Do the operation until

completion, and nobody
else needs repair

New spawns (obviously)
need repair

Function
“app_needs_repair”
reloads checkpoints,
sets the restart
iteration, etc...

“app_needs_repair”
Called upon restart, in
the error handler, and
before completion

PC

longjmp

etimp

Triggering the Restart

— . . See 12.buddycr.c
121 static int app_needs_repair(void) {

122 MPL_Comm tmp; - Upon completion of the
123 MPIX_Comm_replaCE(World, &tmp); Spawn and recreatlon Of
124 Af(tmp == world) return ; the new communicator
125 if(MPI_COMM_NULL '= world) MPI_Comm_free(&world); if repairs have been
126 ld = tmp; .

world = tmp done then we longjmp
127 app_reload_ckpt(world); to skip the remaining of
128
129 eturn _ the loop, and return to
130 the last coherent
131 version. Keep in mind
132 that longjmp does not
133 static void errhandler_respawn(MPI_Commx pcomm, intx errcode, ...) { [)estt?re thet\l’/]arlable?f,]
. ut leaves them as they
142 if(MPIX_ERR_PROC_FAILED != eclass && were at the moment of
143 MPIX_ERR_REVOKED != eclass) { the fault.

144 MPI_Abort(MPI_COMM_WORLD, xerrcode);
145)

146 MPIX Comm revoke(xpcomm);
147 if(app_needs_repair()) longjmp(jmpenv, 0);

148 }

Simple Buddy Checkpoint

49 static int app_buddy_ckpt(MPI_Comm comm) <{

50 if(@ == rank || verbose) fprintf(stderr, "Rank %04d: checkpointing to %04d after iteration
%d\n'", rank, rbuddy(rank), iteration);

51

52 MPI_Sendrecv(mydata_array, count, MPI_DOUBLE, rbuddy(rank), ckpt_tag,
53 buddy_ckpt, count, MPI_DOUBLE, 1lbuddy(rank), ckpt_tag,
54 comm, MPI_STATUS_IGNORE);

55

56 if(app_needs_repair()) {

57 ! fprintf(stderr, "Rank %04d: checkpoint commit was not successful, rollback instead\n",
rank) ;

58 longjmp(jmpenv, 0);

59 }

60 ckpt_iteration = iteration;

61

62 MPI_Sendrecv(mydata_array, count, MPI_DOUBLE, 0, ckpt_tag,

63 my_ckpt, count, MPI_DOUBLE, O, ckpt_tag,

64 MPI_COMM_SELF, MPI_STATUS_IGNORE);

65 return MPI_SUCCESS;

66 }

See 12.buddycr.c

