Application-driven Fault-Tolerance for
High Performance Distributed
Computing.

Bogdan Nicolae
Argonne/MCS

George Bosilca
University of Tennessee at Knoxville

o\_“ .0 ENERGY




* Introduction: 0h30
— 5 minutes motivation (failure rates) - Bogdan

— 10 minutes checkpoint/restart (application level Age N d d

versus system level) - Bogdan

— 15 minutes alternatives (ULFM, Replication, etc.) —
George

* VeloC and Hands-on installation: 1h30 — Bogdan

— 25 mins -> VeloC presentation
— 5 mins -> Questions
— 45 mins -> Hands-on-session
e 15 minutes of setup (Docker, example source code)

* 30 minutes of VeloC

— Configuration: 10 minutes
— Filling the gap in the heat equation application: 10 minutes
— Playing with failures: 10 minutes

 ULFM: 1h30 - George
— 25 mins -> ULFM presentation
— 5 mins -> Questions

— 45 mins -> Hands-on-session
* 30 minon ULFM
e 15 minutes on ULFM + VeloC



Why FT for HPC?

FT need for HPC was marginal because HPC system MTBF were high
enough (1 week, 1 month). This is not true anymore for large
systems today (MTBF of 1 day and less are seen)

It can only get worse with the increase of the number of
components and component complexity

There is no compromise:

— Fault tolerance is not like other problems of HPC (performance, efficiency,
power consumption, etc.)

— There is no half success: application execution succeeds with correct results or
fails!

Clouds are starting considering HPC applications and Cloud nodes
have typically a much lower MTBF than HPC nodes.



Some important definitions

From Avizienis, Laprie et al.:

Definition from the notion of service: a sequence of the system’s external states
(perceived by users)

Correct service: is delivered when the service implements the system function.

Service failure: is an event that occurs when the delivered service deviates from
correct service.

* Failure: at least one (or more) external state of the system deviates

from the correct service state (ex: a computing node fails, a parallel execution fails,
the application fails)

* Error: part of the internal system state that may lead to ... service failure

* Fault: The adjudged or hypothesized cause of an error (root cause of the failure)



Some important definitions

From Avizienis, Laprie et al.:

Definition from the notion of service: a sequence of the system’s external states
(perceived by users)

Col Example:

Sel A) A particle hits a DRAM cell and generates a fault

B) The fault changes the DRAM cell state and becomes an error

C) The error does not affect the rest of the system until a process reads

. the cell

D) The error propagates as a failure if after the read of the memory cell
the software computation, control or I/O deviates from the behavior
it would have had from a correct memory cell

* Fault: The adjudged or hypothesized cause of an error (root cause of the failure)



Specific Error Outcomes in HPC

Types of errors:

- Power outage & Gibson
 Hard errors (broken component: memory, | Hardware
. Softwar
network, core, disk, etc.) ol | Emetvork
. o [JEnvironmen
» Detected soft errors (bit flip in memory, 2 | = B e
logic, bus) g7 |
« OS error (buffer overrun, deadlock, etc.) Q
« System Software error (service malfunctior

* Application bugs

. . 0
 Administrator error (Human) Pink Blue Red Green Black Al
e U H Relative frequency of root
Ser errors ( uman) cause by system type.

Classes of errors:
« Detected and corrected (by ECC, Replication, Re-execution)

« Detected and uncorrectable (leading to application crash)
« Undetected (leading to data corruption, application hang, etc.)

vey



Specific Error Outcomes in HPC

Types of errors:

Power outage

Hard errors (broken component: memory,
network, core, disk, etc.)

Detected soft errors (bit flip in memory,
logic, bus)

OS error (buffer overrun, deadlock, etc.)

System Software error (service malfunctior

Application bugs

Administrator error (Human)

User errors (Human)

Classes of errors:

100

Percentage (%)
an o
(=) o

P
o

r
(=]

Hardware
Software

| IINetwork
[JEnvironmen

ElHuman
Bl Bl Unknown
—_——

Pink Blue Red Green Black All

Relative frequency of root

cause by system type.

« Detected and corrected (by ECC, Replication, Re-execution)
« Detected and uncorrectable (leading to application crash)

« Undetected (leading to data corruption, application hang, etc.)



MTBF 10 Years Ago?

| IBM Research -

Blue Gene Hardware Reliability: Argonne Data

BG/L System Design Target:
— 64 Racks/131k cores MTBF should be greater than 7 Days Paul Coteus, IBM

= Comparison of actual data made by ANL Labs
— asked a number of facilities for reliability data.

Multi teraflop IA64 or X86 systems have 100’s to 1000’s of individual compute nodes.

* For comparison between different systems, fail rates are normalized to peak system
performance in teraflops

System Peak System [Full System Failures Failures per [Failures

Type Performance |Mean Time per Month |Month per Jper Month
(Teraflops) Between Failures Teraflop per BG

IAG4 3.0 1.3 240 8.000

IAG4 10.7 1.1 283 2.645

x86 1.7 45 6.7 3.941

x86 17.2 0.7 451 2622

Power 5 15.0 1.1 19.0 1.267

Blue Gene 365.0 7.5 40 0.011 0.06

| HPC at Petascale and Beyond 8/4/2007 © 2007 |IBM Corporation




MTBF 5 years ago

e Two classes:

— Based on proprietary components: IBM designs BG line with a full system
MTBF of 7 days (true for BG/L, BG/P, BG/Q?)

FIT per Components per | FIT per
Component Component 64K System System
DRAM 5 608,256 | 3,041K Paul Coteus, IBM
Compute + I/O ASIC 20 66,560 | 1,331K
ETH Complex 160 3,024 484K
Non-redundant power supply 500 384 384K
Link ASIC 25 3,072 TTK
Clock chip 6.5 1,200 8K
Total FITs 5,315K

Table 6.12: BlueGene FIT budget.

— Using commodity components (Intel, AMD processors, etc.): MTBF of
about 1 day (some less, some more) for systems with 100,000+ cores

Jaguar XT5 status, April 2009

b » MTTI: 32 hours « Driver for downtimes: Spider testing
» MTTF: 52 hours = System has been up as long as 10 days



Current failure rates

Fault

Local Consequence

Cascading Consequence

Mean Time
between Faults

Node failures
(some hardware
or OS part of the
node fail leading
to a complete
failure of the

User processes running on
the node crashes

Full user execution crash
because the runtime of the
resource/job manager decides
to kill the execution (R1) or
because of a cascading to full
system outage (R2)

BW36.7h
[Mar14]
Titan3: 7.5 h
[Tiw1l4]
resulting in
mean time to

node)? application
failure of 40 h
[TGR15]

Network failure The user processes that Potential full user execution BW: 20 h (link
cannot communicate crash because of R1. Also if failure)
experience time-outs on the execution was not able to [Marl4]
communication. OS or checkpoint because of
runtime may Kill these network failure, then it will
processes. The affected need to restart from the
processes may crash on previous checkpoint (C1).
their own. However, user
processes may be able to
tolerate transient network
shoot down/rerouting.

File system failure | The user processes that Potential full user execution BW:354h
cannot perform file access crash because of R1 or R2 or (between
experience time-outs. OS because the execution reached | execution
or runtime may suspend or | the wall-time limit. C1 applies failures -
kill these processes. The here as well. scratch
affected processes may partition).

2 For example, GPU bus errors (disconnection of the GPU), voltage fault, kernel panic, PCI width degrade, machine check exception, and SXM
(PCI) power off observed in Titan lead to process crashes [Gup15].

3 Time between failures of any node in the system. Each node MTBEF is typically 25 years in these systems [Tiw14].




Interval between failure can be << MTBF

This observation holds for other systems (including old ones)

----------- MTBF
0 \ ‘ ‘ 14.0% ; 14.0% ;
o 30.0% : LANL System 4 LANL System 5
25 0% 12.0% i : 12.0% i :
10.0% 10.0%

20.0%

8.0% 8.0%

15.0%

6.0%
4.0%

6.0%

10.0% 4.0%

Percentage of total failures

Percentage of total failures

Percentage of total failure

5.0% 2.0% 2.0%
o 0.0% 0.0%
B Y I O 20 0 O 0 O O 10 0 L L O

Time between two failures (in hours) Time between two failures (in hours) Time between two failures (in hours)

o 18.0% ; ; w» 16.0% ; , wn 20.0% R

GSJ 16.0% LANL System 18 g 14.0% LANL System 19 %’ Ll:\NL System 20

& 14.0% £ 12.0% £ 15.0%

o 8.0% s 8.0% %5 10.0%

% 6.0% : % 6.0% %

S 4.0% £ 4.0% £ 5.0%

5 2.0% g 2.0% o

00 D DD e 00y s,
Time betweenxtwo faﬁures (?F\ hour;L) Time betweenxtwo fa\i/Iures (;%1 hour;L) Time betweer?/two fa?lures (?F\ hour;L)

Devesh Tiwari, Saurabh Gupta, Sudharshan Vazhkudai, Lazy Checkpointing: Exploiting Temporal Locality in Failures to Mitigate Checkpointing
aerheads on Extreme-Scale Systems, Proceedings of the Annual IEEE/IFIP Int’l Conference on Dependable Systems and Networks (DSN), 2014.



Principle of Checkpoint-Restart

R pa—————
LOAD GAME - D a———
DA bt |
.F(: ------------- Ol
Poao=—m=mmmm——— Detegtion

"7 Area_1 ITEM 10034
Q0 : 00 : O MAP O7

Checkpoints Restart
message




Checkpointing techniques

® A checkpoint is just a ‘snapshot’ of a process (or system) at a certain point in

time

® A checkpointing system provides a way to take these snapshots, and to restart

from them

Type of checkpoint mechanismes:

VM Level
Completely transparent
Heavyweight (full state of each process + OS)
Kernel & User (System) Level
Easy to add checkpointing to existing code
Works with (almost) any programs
‘Coarse’ grain approach (full state of each process)
Examples: Libckpt, CRIU, DMTCP
Application Level
Could require modifications
Different APl (memory level, file level)
‘Fine’ grain approach (only critical state of each process)
Examples: FTI, SCR, VeloC

Bottom of Stack

SP

sbrk(0)

&edata

&etext

0



Parallel Checkpointing
Coordinated Checkpoint castart W_

The objective is to checkpoint the application detection/ - -
when there is no in transit messages between global stop ‘
any two nodes

o failure
Coordination:
Ckpt ‘ ‘
o Automatic through a protocol P ’ ’
it applcati sne —@—@—@—@—
o Implicit: application level

Nodes

Uncoordinated Checkpoint

No need for global coordination (scalable) | | |
o Nodes may checkpoint at any time (independently restart
of the others) detection
« Need to log undeterministic events, i.e., in-transit failure "
messages
o Too complex ‘

Ckpt O O O



Application Level Implicitly Coordinated Parallel Checkpointing

Example: heat distribution bulk sync code

while(i < ITER_TIMES) {
localerror = doWork(nbProcs, rank, M, nbLines, g, h);
1f (1 % ITER_OUT) == @) && (rank == 0))
printf( , 1, globalerror);
1f ((1 % REDUCE) == 0)
MPI_Allreduce(&localer, &globaler, 1, MPI_DOUBLE, MPI_MAX,
MPI_COMM_WORLD);
1f (globalerror < PRECISION)
break;
1++;
1f (1 % CKPT_FREQ == 0) {
FILE *outFile = fopen(“checkpoint”, “wb”);
fwrite(&I, sizeof(int), 1, outFile);
fwrite(Ch, sizeof(double), M * nblLines, outFile);
fwrite(g, sizeof(double), M * nbLines, outFile);



When to checkpoint

[Young 74] Let’s assume that our system failure rates follow the bath tub pattern.
We are interested to compute the checkpoint interval for the constant failure rate regime

Well modeled by the

Exponential distribution
Failure density function:

Decreasing Constant Increasing
* Failure Failure Failure
Rate Rate Rate

Ae ™™ x>0,

2 | Earl Observed Failure
S [ “infant Rate f (I: )‘) -
*, Mortality” ' -
S *. Failure : : 0. T < 0 .
' " | Constant (Random) |
L= I Failures 1
I I
. . MTBF=1/ A
..' ........ ! .
s beveennnnnanees Failure rate
Time -
The main formula used to compute  |nterval = 2 Nheckpoint—time X MTBF
checkpoint John W. Young, « A first order approximation to the optimum checkpoint
Intervals in HPC systems. interval », Communications of the ACM, Volume 17 Issue 9, Sept. 1974

A more accurate formula by John
Daly that integrates restart time. T = \/25(]\[ —I— R) — 6

Interval MTBF Rst time Ckpt time



