VELOC: Very Low Overhead
Checkpointing System

Bogdan Nicolae, Rinku Gupta, Franck Cappello (ANL)
Adam Moody, Elsa Gonsiorowski, Kathryn Mohror (LLNL)

BLawrence Livermore
Argon ne o National Laboratory

NATIONAL LABORATORY

\\ EXASCAHLE

) —) COMPUTING
PROJECT

1 Exascale Computing Project \\u

Part 1:
Overview of VELOC

’_\

—\
e —\ EXASCALE
r— () COMPUTING
2 Exascale Computing Project \\-' PROJECT

HPC Resilience: Checkpoint-Restart (CR)

e Main resilience technique for HPC due to tight coupling
e “Defensive” checkpointing: save state to parallel file system

In action games, autosave checkpoints are
points where a game will automatically save your
progress and restart the player upon death. As such,
the player does not need to restart the entire level
over again. This reduces the frustration and tedium
that is potentially felt without such a design

"Checkpointing is one of these things that’s

simpler in theory than it is in implementation. The
reality is, you're trying to balance many competing
interests,”

Brianna Wu, head of development Giant Spacekat

Bad checkpoints ask players to replay large parts
of the game due to their death or failure in some
task, and this can lead to frustration and anger.

’\
—\

e EXASCALE
re— () COMPUTING
3 Exascale Computing Project —\\: PROJECT

http://www.revolution60.com/

CR at Exascale: Challenges (1)

i
N Network Contention e

. [etworc Contention]

- Gateway Node ~

Contention for Shared
File System Resources

Contention from
Other Clusters for File
System

Cluster 2 39— [Cluster3 |

Parallel File System
Object store, Caching Layer, etc.

e Checkpointing generates a lot of I/O contention to storage
e Impact on performance and scalability is significant

e At Exascale, this issue is amplified:
o Bigger systems -> more frequent failures -> need to checkpoint more frequently

o Large increase in CPU power but modest increase in 1/O capability -> less 1/O
bandwidth available per processing element

\\ EXASCALE

) —) COMPUTING
PROJECT

4 Exascale Computing Project \~

CR at Exascale: Challenges (2)

‘ Local burst buffer model ‘ ‘ Shared burst buffer model ‘

(i)(

« Wil | need to use a different API to
access burst buffers on each system?
+ Cray DataWarp, Intel, IBM
+ HIO, others?
« Will | need to change my /O strategy to
get good performance?

NN s

Parallel File System, Object store, Caching Layer, etc.

e Storage hierarchy is heterogeneous and complex at Exascale:
o Many options in addition to PFS: burst buffers, object stores, caching layers, etc.

o Each HPC machine has its own combination
o Many vendors, each with its own APl and performance characteristics

e Need to customize CR strategy reduces productivity and leads to
inefficiencies as application developers are not |/O experts

\\ EXASCALE

) —) COMPUTING
PROJECT

5 Exascale Computing Project \\.’

VELOC: CR Solution at Exascale

Goal: Provide a checkpoint restart solution for
HPC applications that delivers high
performance and scalability for complex
heterogeneous storage hierarchies without
sacrificing ease of use and flexibility

PPPPPPP

6 Exascale Computing Project \(‘

Key idea: Multi-Level CR

11

é\#%\%*.
T

=

oint Cost and R

XA 2

7 Exascale Computing Project

(=

Multi-level checkpoint-restart uses
a layered approach with increasing
resilience guarantees but higher

checkpointing overhead:
o L1: local checkpoints
o L2: partner copies, erasure codes
o L3: parallel file system

Higher levels defend against more
complex types of failures, which
typically happen less frequently
Cost of higher levels can be
masked asynchronously

VELOC improves performance and
scalability by using multi-level CR

-\

J EXASCALE
) COMPUTING
PROJECT

How to use multiple levels

The checkpoint interval of each level is optimized for the type of

failures not covered by the previous levels
e L1 survives software errors
e L2 survives a majority of simultaneous node failures
e L3 survives catastrophic failures (rack or system down)

Soft failure One node Partner All nodes
crash nodes crash crash
/ i J I
% .] % |
IIE13:LocaI R e e el =y R e T
L2-1:Partner _ . _ . . . e o o e b e e e, ______ - '!. -
node copy + + + +i =
L2-2: Distrib — . —. . . . o -. - _.|;'._._._._._,-._.+
erasure codes
L3: Parallel s mm s mm s wm s mm s mm s mm s am s oam s + - ..'.,. -
File System
-~ Checkpoint -.-.-.-.. Recovery [] Work done twice $¢ Failure
>

8 Exascale Computing Project

&

\\ EXASCALE

) —J COMPUTING
PROJECT

Example of observed failures by level

/ Temporary parallel file system write failure \
Level 1: (subsequent job in same allocation succeeded)
Local

checkpoint
sufficient Transient processor failure
(floating-point exception or segmentation fault)

Job hang

23 Permanent parallel file system write failure
Level 3: (no job in same allocation succeeded)
PFS] 3 Permanent hardware failure
kCheCkpomt (bad CPU or memory DIMM) /
sufficient
2 Power breaker shut off

Observed 191 failures spanning 5.6 million node hours from 871 runs of
PF3d on 3 different clusters (Coastal, Hera, and Atlas).

,_\

—\
e —\ EXASCALE
r— () COMPUTING

9 Exascale Computing Project \~ PROJECT

Hidden Complexity of Heterogeneous Storage

One simple VeloC API

Many complex vendor APIs:
Job e Cray DataWarp
Scheduler/ e DDN IME

Resource e EMC 2 Tiers
- Manager e |IBM CORAL burst buffer

Complex Heterogeneous Storage
Hierarchy (Burst Buffers, Parallel
File Systems, Object Stores, etc.)

VELOC facilitates ease of use by transparent interaction with the
heterogeneous storage hierarchy

’_\

—\
e —\ P EXASCALE
r—) COMPUTING
_\(\— PROJECT

4

10 Exascale Computing Project

Modular Architecture

e Configurable resilience strategy:

NODE 1 _
B carich — . o ST o L1: Local write
1 A h T
g o L2: Partner replication, XOR
encoding, RS encoding
_ o L3: Optimized transfer to external
VelBCRPIL = = = s
: v storage
I | Veloc Engine . .
Checkpoint | POst: Partner e Configurable mode of operation:
e processin inati
ko request ql e o Synchronous mode: resilience
Maki 1 .
- mlg pr—_ engine runs in application process
Local Codin
Checkpoint ' : -
- completiod || optimized o Asynchronous mode: resilience
Recovery notification Transfer

Local
Recovery
Phase

Synchronous mode

Resource-
aware
~ optimal
recovery

@)

engine in separate backend
process (backend survives software
failures in apps)

e Easily extensible:

Custom modules can be added for
additional post-processing in the
engine (e.g. compression)

VELOC facilitates flexibility thanks to
its modular design

-\

’.
\\ J EXRASCALE
r—) | COMPUTING
\ PROJECT
L

11 Exascale Computing Project

VELOC API

Initializing VELOC:

e Application-level checkpoint e VELOC Tnit ()
and restart API VeloC_Init() \d/:;::z:gn e VELOC Finalize ()
inimi : VeloC_Mem_protect() = | Memory registration:
e Minimizes code changes in | "-TEESEEE allocation e VELOC Mem protect ()
applications . e VELOC Mem unprotect ()
T iol des: Mainloop | Fije registration:
¢ Iwo p_OSS_' € modes. _» Checkpoint{) of the e VELOC Route file()
write files and tell VeloC about ® VELOC Checkpoint wait ()
them ® VELOC Checkpoint begin ()
o Memory-oriented API: Declare VeloC_Finalize () ¢ VELOC_CheCpr}nt_mem 0
and capture memory regions ® VELOC Checkpoint end()
. Restart functions:
_ automatically VeloC_Checkpoint_begin() e VELOC Restart test()
® Flre-and-forget: VeloC . ® VELOC Restart begin()

e VELOC Recover mem()
® VELOC Restart end()
Environmental functions:

operates in the background
e Waiting for checkpoints is
e VELOC Get version()

optional; a primitive is used _ :
Convenience functions (Mem. only):

to check progress e VELOC Checkpoint ()
® VELOC Restart()

oy

\\ EXASCALE

) |—) COMPUTING
PROJECT

(

12 Exascale Computing Project \\~

VeloC
Initialization
and Finalize

13 Exascale Computing Project

Initialization

int VELOC_Init(IN MPI_Comm comm, IN const char *cfg_file)

ARGUMENTS

e comm: The MPI communicator corresponding to the processes that need to check-
point/restart as a group (typically MPI_COMM_WORLD)
e cfg file: The VeloC configuration file, detailed in the user guide.

DESCRIPTION

This function initializes the VELOC library. It must be called collectively by all pro-
cesses before any other VELOC function. A good practice is to call it immediately after
MPI_Init().

Finalize

int VELOC Finalize(IN int cleanup)

ARGUMENTS

¢ cleanup: a bool flag specifying whether to remove all checkpoint files after success-
ful completion (non-zero) or to keep them intact (0).

DESCRIPTION

This function shuts down the VELOC library. It must be called collectively by all pro-
cesses and no other VELOC function is allowed afterwards. A good practice is to call it
immediately before MPI_Finalize().

VELOC
Memory-
Based
Mode

In memory-based mode,
applications need to
register any critical
memory regions needed
for restart.

Registration is allowed
at any moment before
initiating a checkpoint or
restart.

Memory regions can
also be unregistered if
they become non-critical
at any moment during
runtime.

14 Exascale Computing Project

Memory Registration

int VELOC_Mem_protect(IN int id, IN void * ptr, IN size_t count, IN size_ t

ARGUMENTS

e id: An application defined id to identify the memory region
e ptr: A pointer to the beginning of the memory region.

e count: The number of elements in the memory region.

e base_size: The size of each element in the memory region.

DESCRIPTION

This function registers a memory region for checkpoint/restart. Each process can regis-
ter and unregister its own memory regions independently of the other processes. The id
of the memory region must be unique within each process.

Memory Deregistration

int VELOC_Mem_unprotect(IN int id)

ARGUMENTS

e id: The id of the memory region previously registered with VELOC_Mem_protect

DESCRIPTION

This function deregisters a memory region for checkpoint/restart.

VELOC
File-
Based
Mode

In the file-based mode,
applications need to
manually
serialize/recover the
critical data structures
to/from checkpoint files.
This mode provides
fine-grain control over
the serialization process
and is especially useful
when the application
uses non-contiguous
memory regions for
which the memory-
based APl is not
convenient to use.

15 Exascale Computing Project

File Registration

int VELOC_Route_file(OUT char *ckpt_file_name)

ARGUMENTS

e ckpt_file_name: Holds the name of the checkpoint file that the user needs to use
to perform I/O

DESCRIPTION

To enable the file-based mode, each process needs to use a predefined checkpoint file
name that is obtained from VeloC. Unlike the memory-based mode, this function needs
to be called after beginning the checkpoint/restart phase (detailed below). The process
then opens the file, reads or writes the critical data structures depending on whether it
performs a checkpoint or restart, then closes the file and then ends the check-
point/restart phase (detailed below).

oy \
\(\ \)|_:

PROJECT

VELOC
Checkpoint
Functions

16 Exascale Computing Project

Begin Checkpoint Phase

int VELOC_Checkpoint_begin(IN const char * name, int version)

ARGUMENTS

e name: The label of the checkpoint.
e version: The version of the checkpoint, needs to increase with each checkpoint
(e.g. iteration number)

DESCRIPTION

This function begins the checkpoint phase. It must be called collectively by all processes
within the same checkpoint/restart group. The name must be an alphanumeric string
holding letters and numbers only.

Serialize Memory Regions

int VELOC_Checkpoint_mem()

ARGUMENTS

e None

DESCRIPTION

The function writes the memory regions previously registered in memory-based mode
to the local checkpoint file corresponding to each process. It must be called after begin-
ning the checkpoint/restart phase and before ending it.

\\'

VELOC
Checkpointing
Functions
(cont.)

Needed in the file mode:

VeloC needs to know when
writing on the checkpoint file

Is done to start the next steps
(synchronous or asynchronous)
of multi-level checkpointing.

17 Exascale Computing Project

Close Checkpoint Phase

int VELOC_Checkpoint_end(IN int success)

ARGUMENTS

¢ success: Bool flag indicating whether the calling process completed its checkpoint
successfully.

DESCRIPTION

This function ends the checkpoint phase. It must be called collectively by all processes
within the same checkpoint/restart group. The success flag indicates to VeloC whether
the process has successfuly managed to write the local checkpoint. In synchronous
mode, ending the checkpoint phase will perform all resilience strategies employed by
VeloC in blocking fashion. The return value indicates whether these strategies suc-
ceeded or not. In asynchornous mode, ending the checkpoint phase will trigger all re-
silience strategies in the background, while returning control to the application immedi-
ately. This operation is always succesful.

Wait for Checkpoint Completion

int VELOC_Checkpoint_wait()

ARGUMENTS

e None

DESCRIPTION

This routine waits for any resilience strategies employed by VeloC in the background to
finish. The return value indicates whether they were successful or not. The function is
meaningul only in asynchronous mode. It has no effect in synchronous mode and sim-
ply returns success.

VELOC Checkpointing Functions (cont.)

Convenience Checkpoint Wrapper

int VELOC_Checkpoint(IN const char *name, int version)

ARGUMENTS

e name: The label of the checkpoint.
e version: The version of the checkpoint, needs to increase with each checkpoint
(e.g. iteration number)

DESCRIPTION

This function is a convenience wrapper equivalent with waiting for the previous check-
point (if in asynchronous mode), then starting a new checkpoint phase, writing all regis-
tered memory regions and closing the checkpoint phase.

’_\

-y \
pr— —\ EXASCALE
) COMPUTING
L

18 Exascale Computing Project \(\ PROJECT

VELOC
Restart
Functions

19 Exascale Computing Project

Obtain latest version

int VELOC_Restart_test(IN const char *name, IN int version)

ARGUMENTS

e name : Label of the checkpoint
e max_ ver : Maximum version to restart from

DESCRIPTION

This function probes for the most recent version less than max_ ver that can be used to
restart from. If no upper limit is desired, max_ ver can be set to zero to probe for the
most recent version. Specifying an upper limit is useful when the most recent version is
corrupted (e.g. the restored data structures fail integrity checks) and a new restart is
needed based on the preceding version. The application can repeat the process until a
valid version is found or no more previous versions are available. The function returns
VELOC_FAILURE if no version is available or a positive integer representing the most
recent version otherwise.

Open Restart Phase

int VELOC_Restart_begin(IN const char *name, IN int version)

ARGUMENTS

e name : Label of the checkpoint
¢ version : Version of the checkpoint

DESCRIPTION

This function begins the restart phase. It must be called collectively by all processes
within the same checkpoint/restart group. The version of the checkpoint can be either
the version returned by VELOC_Restart_test or any other lower version that is available.

Memory-based Restart

VELOC
Restart
Functions %iﬁms

(cont.) DESCRIPTION

The function restores the memory regions previously registered in memory-based mode
from the checkpoint file that was specified when beginning the restart phase. Must be
called between VELOC_Restart_begin() and VELOC_Restart_end().

int VELOC_Recover_mem()

Close Restart Phase

int VELOC_Restart_end (IN int success)

ARGUMENTS

¢ sucess: Bool flag indicating whether the calling process restored its state from the
checkpoint successfully.

DESCRIPTION

This function ends the restart phase. It must be called collectively by all processes
within the same checkpoint/restart group. The success flag indicates to VeloC whether
the process has successfuly managed to restore the cricial data structures from the
checkpoint specified in VELOC_Restart_begin().

20 Exascale Computing Project

VELOC Restart Functions (cont.)

Convenience Restart Wrapper

int VELOC_Restart(IN const char *name, IN int version)

ARGUMENTS

e name : Label of the checkpoint
e version : Version of the checkpoint

DESCRIPTION

This function is a convenience wrapper for opening a new restart phase, recovering the
registered memory regions from the checkpoint and closing the restart phase.

’_\

-y \
pr— —\ EXASCALE
) COMPUTING
L

21 Exascale Computing Project \(\ PROJECT

Examples of ECP apps using VELOC

Lattice &lat = LatticeFactory::Create(F CLASS NONE, gluon);
#ifdef HAVE VELO

int veloc_id;

VELOC _Mem protect ((veloc_id= VeloCCounter()) , lat.GaugeField(), g size, sizeof(Float));

VRB.Result(cname, fname, "mom VELOC i 5 ize
#endif

LatticeFactory::Destroy();

lat.[8augeField() should be saved

for (int i=0; i<steps; i++) {
#ifdef HAVE_VELOC
std::stringstream veloc label, veloc label2;
if (level == TOP_LEVEL INTEGRATOR){
veloc_label <<"Veloc t << traj;
std::cout <<"Veloc lab "<< veloc_label.str().c_str() <<std::endl;

int veloc v = VELOC Restart test(veloc label.str().c_str());
if(veloc_v == VELOC_FAILURE) { // no restart, checkpoint
VELOC Checkpoint begin(veloc label.str().c str(), i)
VELOC Checkpoint mem();
VELOC_Checkpoint_end(true);
veloc_label2 <<"Ve traj"<<traj<<" "<<i<<std::endl;
std::cout <<"Veloc label2: "<<veloc label2.str().c_str() <<std
LRG.Write(veloc label2.str().c str());
se {

assert(veloc_v < steps);

i = veloc_ v; b
VELOC_Restart_begin(veloc_label.str().c_str(), i)
VELOC_Recover mem();

VELOC Restart_end(true);

veloc label2 <<"Veloc traj"<<traj<<" "<<i<<std::endl;
std::cout <<"Veloc label2: "<<veloc label2.str().c str() <<std
LRG.Read(veloc label2.str().c_str());

#endif
CSM. SaveComment (++step_cnt);

LatticeQCD

e Helps understand particle dynamics (quarks, gluons)
e Based on CPS (Columbia Physics System)
e Needs to checkpoint a 1D array

22 Exascale Computing Project

\n",veloc_id,lat.GaugeField(), g_size);

//call Veloc functions to register the variables to protect
#1fdef POSVEL_64
printf();
VELOC_Mem protect(0, xx, nTotal, VELOC DBLE); }
VELOC_Mem_protect(l, yy, nTotal, VELOC DBLE);
VELOC_Mem protect(2, zz, nTotal, VELOC DBLE);
VELOC Mem protect(3, vx, nTotal, VELOC DBLE);
VELOC_Mem_protect(4, vy, nTotal, VELOC DBLE);
VELOC Mem protect(5, vz, nTotal, VELOC DBLE);
VELOC_Mem_protect(6, phi, nTotal, VELOC DBLE);
VELOC_Mem_protect(7, mask, nTotal, VELOC_SHRT);
VELOC Mem protect(8, mass, nTotal, VELOC DBLE);
#else
printf()i
VELOC_Mem_protect(0, xx, nTotal, VELOC_SFLT);
VELOC_Mem_protect(l, yy, nTotal, VELOC_SFLT);
VELOC Mem protect(2, zz, nTotal, VELOC_SFLT);
VELOC_Mem_protect(3, vx, nTotal, VELOC_SFLT);
VELOC_Mem_protect(4, vy, nTotal, VELOC SFLT);
VELOC_Mem protect(5, vz, nTotal, VELOC_SFLT); }
VELOC_Mem protect(6, phi, nTotal, VELOC SFLT);
VELOC_Mem_protect(7, mask, nTotal, VELOC_SHRT);
VELOC_Mem_protect(8, mass, nTotal, VELOC_SFLT);
#end1if

ULU.WILLEYL]

else {

* FILE *outFile = fopen(outName, "wb");
fwrite(&Np, sizeof(int), 1, outFile);
fwrite(&xx[0], sizeof(POSVEL T), Np, outFile);
fwrite(&vx[0], sizeof(POSVEL T), Np, outFile);
fwrite(&yy[0], sizeof(POSVEL T), Np, outFile);
fwrite(&vy([0], sizeof(POSVEL_T), Np, outFile);
fwrite(&zz[0], sizeof(POSVEL T), Np, outFile);
fwrite(&vz[0], sizeof(POSVEL T), Np, outFile);
fwrite(&phi[0], sizeof(POSVEL T), Np, outFile);
fwrite(&id[@], sizeof(ID T), Np, outFile);

(

furite(&mask[@], sizeof(MASK T), Np, outFile);
fclose(outFile);*/
VELOC_Mem save();

std::cout =< << nTotal << ;

#1fdef ID_64
VELOC Mem protect(9,

#else
VELOC_Mem_protect(9,

#end1if

id, nTotal, VELOC LONG);

id, nTotal, VELOC_INTG);

VELOC Mem protect(10, &step, 1, VELOC INTG);

HACC

e Helps understand structure formation of universe
e Needs to checkpoint 6 x 1D arrays

Comy
\\ EXASCALE
| S)l—’ COMPUTING
PROJECT

Industry Interest for VELOC
e Total SA

. Major French oil and gas multi-national
. Needs HPC to accelerate studies
. Largest industrial supercomputer (6 PFlop)

) TOTAL

COMMITTED TO BETTER ENERGY

e Application: PoroDG
. Simulations of porous media
. Discontinuous Galerkin method
. Written in Fortran
. Needs efficient checkpoint-restart

OIL & GAS PRODUCTION

e Collaborative project
. Fortran bindings for VELOC
. Evaluations of VELOC in progress S

\\ EXASCALE

) —) COMPUTING
PROJECT

23 Exascale Computing Project \(\
—

Results: Sync vs. Async Mode

140

120

100

80

60

Checkpoint time (s)

40

20

0

sync
async s

Increase in runtime / checkpoint (s)

4096 8192 16384 32768 65536
Number of PEs (256/node)

140

120

100

80

60

40

20

0

e Experimental platform: Theta (thousands of KNL

e \What people did so far: blocking writes to PFS

nodes, Lustre PFS)

(purple)
o The result: poor scalability

e What VeloC can do: async writes to PFS (green)

o Apps are blocked only during local writes
(on DRAM)
o Much better scalability

24 Exascale Computing Project

sync HEEEE
async I

4096 8192 16384 32768
Number of PEs (256/node)

65536

e The cost for doing async flushes
to PFS:

They generate noticeable
interference but it does not grow

(@)

at scale

e Overall:
Rapid growing gap between
sync and async with increasing

(@)

#PEs

\
\)I-’

EXASCALE
COMPUTING
PROJECT

Heterogeneity of Local Storage

e Local storage is increasingly complex
e Example: KNL Node (ANL Theta)

o MCDRAM

o DDR4 RAM

o Flash Storage (SSD)

e VELOC can leverage heterogeneous local
storage to improve performance
e Example:
o Scenario: 256 concurrent writers, each
writing 256 MB
o Hybrid local storage: 6 GB DDR4 + 128
GB SSD
o Hybrid local storage much faster than
SSD only despite small DDR4 size

25 Exascale Computing Project

Intel Xeon Phi Up to 16 GiB Up to 384 GiB
Processor over 400 GB/s ~ 90 GB/s (STREAM)

DDR4
RAM

(system memory)

| ColfaxResearch.com

160

Fybrd-6GE —+—
ram-only —se— ¥
140 | ssd-only —» /

120

100

80

Max. write time (s)

0 50 100 150 200 250 300
Number of concurrent writers

(b) Total time for all processes to write to local
storage under increasing concurrency.

oy

&

\ EXASCALE
pr— \) |—) COMPUTING

PROJECT

Zoom on Hybrid Local Storage

I O,y Wait for cache slot
| or write to flash?

250

T
hybrid-naive-6GE
hybrid-adv-6GB s

200

150

100

50

Increase in execution time per checkpoint (s)

2048 4096 8192 16384
Number of processes (256/node)

26 Exascale Computing Project

Problem: Naive strategies that write
to fastest available local storage are
not enough for multi-level
checkpointing

Example:

o Nodes equipped with small RAM cache
(6 GB) and flash storage (128 GB)

o Two resilience levels: local and parallel
file system (async flush from local)

o When RAM cache is full, if PFS is faster
than flash storage, it is better to wait for
RAM cache instead of writing to flash

VELOC has a multi-level aware
strategy to manage local storage
Experiments on ANL Theta (KNL):
better performance for strategy
employed by VELOC vs. naive
strategy

\
EXASCALE
\) |—) COMPUTING

PROJECT

Use of CR Beyond Resilience (1)

e “Administrative” checkpointing:) el R M g Q)
‘ St) rep, G s 1 ontroller

o Suspend-Resume 7 N, .p§;>;>r. -'W‘

m Reservations too short bom oW §>;>‘ .. |

m Make room for real-time jobs — .'z? : E

o |\/|ig ration \ " Reconstructonéngine ™} o i; E

H Data Atqulsmo S chut .—rep ' > N i
O Debugglng & Distribution B o . e ON[T o L4

e Example: Real Time Analysis and Experimental Steering

o Classic HPC: process and validate data only after experiment has
finished
o Issues:

m Errors detected too late or not at all
m Cannot act early on results

o Solution:

m Mix real-time stream processing (on-demand jobs) with batch jobs
m Apply suspend-resume to batch jobs make room for on-demand jobs

\\ EXASCALE

) —) COMPUTING
PROJECT

27 Exascale Computing Project \.,

Use of CR Beyond Resilience (2)

e “Productive” checkpointing: o
O Large state space that needs to be

constantly revisited T—» BB }—{B—{B}—{n]—
o Ensemble searches with shared] ! !
states R A BBl A5

e Example: Adjoint Computations

o Modelling of fluid dynamic code (e.g. atmospheric simulation)

o Initial parameters x0, x| + 1

o Two phases:
m Forward simulation (FO, F1, ...): model system using intermediate states
m Inverse problem (F’I+1, F’I+2, ...): how well intermediate states fit goal

o Need all intermediate states from forward simulation

o However, there is not enough room to save them all in DRAM

o Solution: use CR to save and restore intermediate states optimally

-\

S \
\ EXASCALE

) —J COMPUTING
PROJECT

28 Exascale Computing Project \(

Conclusions

e Checkpoint-Restart at Exascale is challenging
o High I/O contention but limited 1/0O bandwidth per processing unit
o Heterogeneous storage with different performance characteristics and
vendor APls

e VELOC: Very Low Overhead Checkpointing System

o Multi-level checkpointing delivers high performance and scalability
o Hidden complexity of heterogeneous storage facilitates ease of use
o Modular architecture facilitates high flexibility and extensibility

e Supports
o Synchronous, asynchronous mode
o Memory-based, file based API

e Results
o Survives up to 85% of failures without need to checkpoint to parallel file
system
o Up to an order of magnitude improvement in async mode over blocking
checkpointing to parallel file system

-\

S \
\) EXASCALE
) COMPUTING

PROJECT

29 Exascale Computing Project \(

Part 2:
Hands-on Session

’_\

—\
r— —\ EXRASCALE
— () COMPUTING
PROJECT
30 Exascale Computing Project \\-'

Installation

VeloC is available on Spack, the ECP package manager:

$ git clone https://github.com/spack/spack.git
$. spack/share/spack/setup-env.sh
S spack install veloc

VeloC also has its own automated installation tools:

$ git clone https://github.com/ECP-VeloC/VELOC.git
$./bootstrap.sh
$./auto-install.py <install directory>

Installation is not covered in this tutorial

-\

/i.“

J EXASCALE
}l COMPUTING
PROJECT

31 Exascale Computing Project \
o

https://github.com/spack/spack.git
https://github.com/ECP-VeloC/VELOC.git

First Step: Setup

For the purpose of this tutorial, we will use a Docker image that has both
ULFM and VeloC pre-installed:

apt-get install docker.io # install if needed (Ubuntu)
sudo usermod -aG docker S$SUSER #log out to refresh
docker run hello-world #test docker installation
docker pull bnicolae/veloc-tutorial

Ur U Uy Uy

For MAC users, follow the instructions here:
https://store.docker.com/editions/community/docker-ce-desktop-mac
You will have to create an account on DockerHub to be able to download.

The tutorial uses a sample application and some helper scripts available here:
https://goo.gl/nDtDPa

Comy

32 Exascale Computing Project \\u

PROJECT

\
EXASCALE
\”-—J COMPUTING

https://store.docker.com/editions/community/docker-ce-desktop-mac

Second Step: Run Original Application

Set up aliases for make and mpirun so that they run in a Docker container based on the
image previously downloaded:

S . create-aliases.sh
S alias # check the aliases

Compile the sample application (modeling of heat distribution):

(o |

Run the application (4 ranks per node, 256 MB per rank):

{ S mpirun -np 4 heatdis 256 heatdis.cfg }

S \
\ EXASCAHLE

— () —J COMPUTING
33 Exascale Computing Project \\~

PROJECT

Successful Output

////;ocal data size is 8192 x 2051 =
Target precision : 0.000010

ion finished in

162.528864 seconds

256.000000 MB (256) .

Maximum number of iterations 600
Step 0, error = 1.000000

Step 50, error = 0.484743

Step 100, error = 0.242139

Step 150, error = 0.161172

Step 200, error = 0.121036

Step 250, error = 0.096793

Step 300, error = 0.080644

Step : 350, error = 0.069129

Step : 400, error = 0.060499

Step : 450, error = 0.053781

Step : 500, error = 0.048396

Step : 550, error = 0.043974

\\\\fxecut

/

’\

—y \
\ J EXASCALE
r—) | COMPUTING
\ PROJECT
(g

34 Exascale Computing Project

Third Step: Add VELOC Checkpointing

e Follow the comments in the source code of the application
(heatdis.c)

e Replace the VELOC code comments with the missing Veloc API
calls.

e Consult the documentation: http://veloc.rtfd.io
e Check out in particular the API section:

https://veloc.readthedocs.io/en/latest/api.html

—
\\ EXASCALE
) — COMPUTING

PROJECT

35 Exascale Computing Project \\v

http://veloc.rtfd.io
https://veloc.readthedocs.io/en/latest/api.html

Third Step: Solution Part 1

Example application: Heat Distribution (included with VeloC)

Initialize VeloC:

//> MPI Init(&argc, &argv);
MPI Comm size (MPI COMM WORLD, &nbProcs);
MPI Comm rank (MPI COMM WORLD, &rank);

exit (2);

\\» }

if (VELOC Init (rank, argv[2]) != VELOC SUCCESS) {
printf ("Error initializing VELOC! Aborting...\n");

~

)

Protect essential data structures:

//>nbLines = (M / nbProcs) + 3;

~

h = (double *) malloc(sizeof (double *) * M * nbLines);
g = (double *) malloc(sizeof (double *) * M * nbLines);

initData (nbLines, M,

VELOC Mem protect (0,
VELOC Mem protect (1,
\\»VELOC_Mem_protect(2,

rank, g);

&i, 1, sizeof (int));
h, M * nblLines, sizeof (double));

g, M * nbLines, sizeof (double)); 4//

36 Exascale Computing Project

\
\)I—’

EXASCALE
COMPUTING
PROJECT

Third Step: Solution Part 2

Check if a previous checkpoint exists & restore essential data structures:

-

int v = VELOC Restart test ("heatdis", 0);
if (v > 0) {
printf ("Previous checkpoint at iteration %d, initiating restart...\n", v);
assert (VELOC Restart ("heatdis", v) == VELOC SUCCESS) ;
} else // no previous checkpoint found
i = 0;

o /

Fomy
\\ EXASCALE
} |—) COMPUTING
PROJECT

37 Exascale Computing Project \~

Third Step: Solution Part 3

Inside the main loop, checkpoint each CKPT _FREQ iterations:

while (1 < ITER TIMES) ({
err = doWork (nbProcs, rank, M, nblLines, g, h);

if (((i % ITER OUT) == 0) && (rank == 0))
printf ("Step : %d, error = $f\n", i, globalerr);
if ((1 % REDUCE) == 0)

MPI Allreduce (&err, &globalerr, 1, MPI DOUBLE, MPI MAX,
MPI COMM WORLD) ;
if (globalerr < PRECISION)

break;

i++;

if (1 % CKPT FREQ == 0) {

// wait for previous checkpoint to finish (only in async mode)
assert (VELOC Checkpoint wait () == VELOC SUCCESS) ;

// capture the protected data structures
assert (VELOC Checkpoint ("heatdis", i) == VELOC SUCCESS) ;

}

VELOC_Finalize();

_Pina1i7@(\:

Fomy
\\ EXASCALE
) |—J COMPUTING
PROJECT

38 Exascale Computing Project \\y

Fourth Step: Configure VELOC & Run

Create veloc.cfg, then specify the path to the local scratch directory (LO), persistent PFS
directory (L3) and mode of operation (minimum mandatory parameters). L2 is disabled for a
single node. The directories will be created automatically by VELOC if they don’t exist.

scratch = ./scratch
persistent = ./persistent
mode = sync

Run the application with VELOC up to iteration 250. Confirm VELOC created checkpoints:

$ mpirun -np 4 heatdis 256 veloc.cfg
$ 1ls -Al ./scratch

Kill the application (Ctrl+C), then run again. The application will pick up from
where it left. Check the final result to confirm correctness.

Consult the documentation to learn about more configuration parameters:
https://veloc.readthedocs.io/en/latest/userquide.html

—\
\) EXASCALE
— () COMPUTING
39 Exascale Computing Project \\u PROJECT

https://veloc.readthedocs.io/en/latest/userguide.html

Bonus: Asynchronous Mode

Edit veloc.cfg to activate the asynchronous mode:

scratch = ./scratch
persistent = ./persistent
mode = async

Remove all previous checkpoints and start the active backend:

S rm -rf scratch persistent

S veloc-backend veloc.cfg

Run the application in a different terminal, same as in sync mode:

S . create-aliases.sh
S mpirun -np 4 heatdis 256 veloc.cfg

.

40 Exascale Computing Project \\y

/i.“

]

EXASCALE
COMPUTING
PROJECT

Feel free to visit our web site:

http://veloc.rtfd.io

Thank you!

S \
\ J EXASCALE
COMPUTING

41 Exascale Computing Project \(\y) PROJECT

