
1 Exascale Computing Project

VELOC: Very Low Overhead
Checkpointing System

Bogdan Nicolae, Rinku Gupta, Franck Cappello (ANL)

Adam Moody, Elsa Gonsiorowski, Kathryn Mohror (LLNL)

2 Exascale Computing Project

Part 1:
Overview of VELOC

3 Exascale Computing Project

HPC Resilience: Checkpoint-Restart (CR)

● Main resilience technique for HPC due to tight coupling
● “Defensive” checkpointing: save state to parallel file system

In action games, autosave checkpoints are
points where a game will automatically save your
progress and restart the player upon death. As such,
the player does not need to restart the entire level
over again. This reduces the frustration and tedium
that is potentially felt without such a design

"Checkpointing is one of these things that’s
simpler in theory than it is in implementation. The
reality is, you’re trying to balance many competing
interests,”
Brianna Wu, head of development Giant Spacekat

Bad checkpoints ask players to replay large parts
of the game due to their death or failure in some
task, and this can lead to frustration and anger.

http://www.revolution60.com/

4 Exascale Computing Project

CR at Exascale: Challenges (1)

Object store, Caching Layer, etc.

● Checkpointing generates a lot of I/O contention to storage
● Impact on performance and scalability is significant
● At Exascale, this issue is amplified:

○ Bigger systems -> more frequent failures -> need to checkpoint more frequently
○ Large increase in CPU power but modest increase in I/O capability -> less I/O

bandwidth available per processing element

5 Exascale Computing Project

CR at Exascale: Challenges (2)

Parallel File System, Object store, Caching Layer, etc.

● Storage hierarchy is heterogeneous and complex at Exascale:
○ Many options in addition to PFS: burst buffers, object stores, caching layers, etc.
○ Each HPC machine has its own combination
○ Many vendors, each with its own API and performance characteristics

● Need to customize CR strategy reduces productivity and leads to
inefficiencies as application developers are not I/O experts

6 Exascale Computing Project

VELOC: CR Solution at Exascale

Goal: Provide a checkpoint restart solution for
HPC applications that delivers high
performance and scalability for complex
heterogeneous storage hierarchies without
sacrificing ease of use and flexibility

7 Exascale Computing Project

Key idea: Multi-Level CR
● Multi-level checkpoint-restart uses

a layered approach with increasing
resilience guarantees but higher
checkpointing overhead:
○ L1: local checkpoints
○ L2: partner copies, erasure codes
○ L3: parallel file system

● Higher levels defend against more
complex types of failures, which
typically happen less frequently

● Cost of higher levels can be
masked asynchronously

VELOC improves performance and
scalability by using multi-level CR

8 Exascale Computing Project

The checkpoint interval of each level is optimized for the type of
failures not covered by the previous levels
● L1 survives software errors
● L2 survives a majority of simultaneous node failures
● L3 survives catastrophic failures (rack or system down)

Soft failure One node
crash

Partner
nodes crash

All nodes
crash

L1: Local
FS

L2-1: Partner
node copy

L2-2: Distrib
erasure codes

L3: Parallel
File System

Checkpoint Recovery Work done twice Failure

How to use multiple levels

9 Exascale Computing Project

Example of observed failures by level

10 Exascale Computing Project

Hidden Complexity of Heterogeneous Storage

One simple VeloC API

Many complex vendor APIs:

● Cray DataWarp

● DDN IME

● EMC 2 Tiers

● IBM CORAL burst buffer

Complex Heterogeneous Storage

Hierarchy (Burst Buffers, Parallel

File Systems, Object Stores, etc.)

VELOC facilitates ease of use by transparent interaction with the

heterogeneous storage hierarchy

11 Exascale Computing Project

Modular Architecture
● Configurable resilience strategy:

○ L1: Local write
○ L2: Partner replication, XOR

encoding, RS encoding
○ L3: Optimized transfer to external

storage
● Configurable mode of operation:

○ Synchronous mode: resilience
engine runs in application process

○ Asynchronous mode: resilience
engine in separate backend
process (backend survives software
failures in apps)

● Easily extensible:
○ Custom modules can be added for

additional post-processing in the
engine (e.g. compression)

VELOC facilitates flexibility thanks to
its modular design

12 Exascale Computing Project

VELOC API
● Application-level checkpoint

and restart API
● Minimizes code changes in

applications
● Two possible modes:

○ File-oriented API: Manually
write files and tell VeloC about
them

○ Memory-oriented API: Declare
and capture memory regions
automatically

● Fire-and-forget: VeloC
operates in the background

● Waiting for checkpoints is
optional; a primitive is used
to check progress

Initializing VELOC:
● VELOC_Init()
● VELOC_Finalize()

Memory registration:
● VELOC_Mem_protect()
● VELOC_Mem_unprotect()

File registration:
● VELOC_Route_file()

Checkpoint functions:
● VELOC_Checkpoint_wait()
● VELOC_Checkpoint_begin()
● VELOC_Checkpoint_mem()
● VELOC_Checkpoint_end()

Restart functions:
● VELOC_Restart_test()
● VELOC_Restart_begin()
● VELOC_Recover_mem()
● VELOC_Restart_end()

Environmental functions:
● VELOC_Get_version()

Convenience functions (Mem. only):
● VELOC_Checkpoint()
● VELOC_Restart()

13 Exascale Computing Project

VeloC
Initialization
and Finalize

14 Exascale Computing Project

VELOC
Memory-
Based
Mode
In memory-based mode,
applications need to
register any critical
memory regions needed
for restart.
Registration is allowed
at any moment before
initiating a checkpoint or
restart.
Memory regions can
also be unregistered if
they become non-critical
at any moment during
runtime.

15 Exascale Computing Project

VELOC
File-
Based
Mode
In the file-based mode,
applications need to
manually
serialize/recover the
critical data structures
to/from checkpoint files.
This mode provides
fine-grain control over
the serialization process
and is especially useful
when the application
uses non-contiguous
memory regions for
which the memory-
based API is not
convenient to use.

16 Exascale Computing Project

VELOC
Checkpoint
Functions

17 Exascale Computing Project

VELOC
Checkpointing
Functions
(cont.)

Needed in the file mode:
VeloC needs to know when
writing on the checkpoint file
Is done to start the next steps
(synchronous or asynchronous)
of multi-level checkpointing.

18 Exascale Computing Project

VELOC Checkpointing Functions (cont.)

19 Exascale Computing Project

VELOC
Restart
Functions

20 Exascale Computing Project

VELOC
Restart
Functions
(cont.)

21 Exascale Computing Project

VELOC Restart Functions (cont.)

22 Exascale Computing Project

Examples of ECP apps using VELOC

LatticeQCD
● Helps understand particle dynamics (quarks, gluons)
● Based on CPS (Columbia Physics System)
● Needs to checkpoint a 1D array

HACC
● Helps understand structure formation of universe
● Needs to checkpoint 6 x 1D arrays

23 Exascale Computing Project

Industry Interest for VELOC
● Total SA

● Major French oil and gas multi-national
● Needs HPC to accelerate studies
● Largest industrial supercomputer (6 PFlop)

● Application: PoroDG
● Simulations of porous media
● Discontinuous Galerkin method
● Written in Fortran
● Needs efficient checkpoint-restart

● Collaborative project
● Fortran bindings for VELOC
● Evaluations of VELOC in progress

24 Exascale Computing Project

Results: Sync vs. Async Mode

● Experimental platform: Theta (thousands of KNL
nodes, Lustre PFS)

● What people did so far: blocking writes to PFS
(purple)
○ The result: poor scalability

● What VeloC can do: async writes to PFS (green)
○ Apps are blocked only during local writes

(on DRAM)
○ Much better scalability

● The cost for doing async flushes
to PFS:

○ They generate noticeable
interference but it does not grow
at scale

● Overall:
○ Rapid growing gap between

sync and async with increasing
#PEs

25 Exascale Computing Project

Heterogeneity of Local Storage

● Local storage is increasingly complex
● Example: KNL Node (ANL Theta)

○ MCDRAM
○ DDR4 RAM
○ Flash Storage (SSD)

● VELOC can leverage heterogeneous local
storage to improve performance

● Example:
○ Scenario: 256 concurrent writers, each

writing 256 MB
○ Hybrid local storage: 6 GB DDR4 + 128

GB SSD
○ Hybrid local storage much faster than

SSD only despite small DDR4 size

26 Exascale Computing Project

Zoom on Hybrid Local Storage
● Problem: Naive strategies that write

to fastest available local storage are
not enough for multi-level
checkpointing

● Example:
○ Nodes equipped with small RAM cache

(6 GB) and flash storage (128 GB)
○ Two resilience levels: local and parallel

file system (async flush from local)
○ When RAM cache is full, if PFS is faster

than flash storage, it is better to wait for
RAM cache instead of writing to flash

● VELOC has a multi-level aware
strategy to manage local storage

● Experiments on ANL Theta (KNL):
better performance for strategy
employed by VELOC vs. naive
strategy

27 Exascale Computing Project

Use of CR Beyond Resilience (1)

● “Administrative” checkpointing:
○ Suspend-Resume

■ Reservations too short
■ Make room for real-time jobs

○ Migration
○ Debugging

● Example: Real Time Analysis and Experimental Steering
○ Classic HPC: process and validate data only after experiment has

finished
○ Issues:

■ Errors detected too late or not at all
■ Cannot act early on results

○ Solution:
■ Mix real-time stream processing (on-demand jobs) with batch jobs
■ Apply suspend-resume to batch jobs make room for on-demand jobs

28 Exascale Computing Project

Use of CR Beyond Resilience (2)

● “Productive” checkpointing:

○ Large state space that needs to be

constantly revisited

○ Ensemble searches with shared

states

● Example: Adjoint Computations

○ Modelling of fluid dynamic code (e.g. atmospheric simulation)

○ Initial parameters x0, x’l + 1

○ Two phases:

■ Forward simulation (F0, F1, ...): model system using intermediate states

■ Inverse problem (F’l+1, F’l+2, ...): how well intermediate states fit goal

○ Need all intermediate states from forward simulation

○ However, there is not enough room to save them all in DRAM

○ Solution: use CR to save and restore intermediate states optimally

29 Exascale Computing Project

Conclusions
● Checkpoint-Restart at Exascale is challenging

○ High I/O contention but limited I/O bandwidth per processing unit
○ Heterogeneous storage with different performance characteristics and

vendor APIs
● VELOC: Very Low Overhead Checkpointing System

○ Multi-level checkpointing delivers high performance and scalability
○ Hidden complexity of heterogeneous storage facilitates ease of use
○ Modular architecture facilitates high flexibility and extensibility

● Supports
○ Synchronous, asynchronous mode
○ Memory-based, file based API

● Results
○ Survives up to 85% of failures without need to checkpoint to parallel file

system
○ Up to an order of magnitude improvement in async mode over blocking

checkpointing to parallel file system

30 Exascale Computing Project

Part 2:
Hands-on Session

31 Exascale Computing Project

Installation
VeloC is available on Spack, the ECP package manager:

$ git clone https://github.com/spack/spack.git
$. spack/share/spack/setup-env.sh
$ spack install veloc

VeloC also has its own automated installation tools:
$ git clone https://github.com/ECP-VeloC/VELOC.git
$./bootstrap.sh
$./auto-install.py <install_directory>

Installation is not covered in this tutorial

https://github.com/spack/spack.git
https://github.com/ECP-VeloC/VELOC.git

32 Exascale Computing Project

First Step: Setup
For the purpose of this tutorial, we will use a Docker image that has both

ULFM and VeloC pre-installed:

$ apt-get install docker.io # install if needed (Ubuntu)
$ sudo usermod -aG docker $USER #log out to refresh
$ docker run hello-world #test docker installation
$ docker pull bnicolae/veloc-tutorial

For MAC users, follow the instructions here:

https://store.docker.com/editions/community/docker-ce-desktop-mac

You will have to create an account on DockerHub to be able to download.

The tutorial uses a sample application and some helper scripts available here:

https://goo.gl/nDtDPa

https://store.docker.com/editions/community/docker-ce-desktop-mac

33 Exascale Computing Project

Second Step: Run Original Application

$. create-aliases.sh
$ alias # check the aliases

Set up aliases for make and mpirun so that they run in a Docker container based on the
image previously downloaded:

Compile the sample application (modeling of heat distribution):

$ make

Run the application (4 ranks per node, 256 MB per rank):

$ mpirun -np 4 heatdis 256 heatdis.cfg

34 Exascale Computing Project

Successful Output

Local data size is 8192 x 2051 = 256.000000 MB (256).
Target precision : 0.000010
Maximum number of iterations : 600
Step : 0, error = 1.000000
Step : 50, error = 0.484743
Step : 100, error = 0.242139
Step : 150, error = 0.161172
Step : 200, error = 0.121036
Step : 250, error = 0.096793
Step : 300, error = 0.080644
Step : 350, error = 0.069129
Step : 400, error = 0.060499
Step : 450, error = 0.053781
Step : 500, error = 0.048396
Step : 550, error = 0.043974
Execution finished in 162.528864 seconds

35 Exascale Computing Project

Third Step: Add VELOC Checkpointing

● Follow the comments in the source code of the application
(heatdis.c)

● Replace the VELOC code comments with the missing Veloc API
calls.

● Consult the documentation: http://veloc.rtfd.io
● Check out in particular the API section:

https://veloc.readthedocs.io/en/latest/api.html

http://veloc.rtfd.io
https://veloc.readthedocs.io/en/latest/api.html

36 Exascale Computing Project

Third Step: Solution Part 1
Example application: Heat Distribution (included with VeloC)

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &nbProcs);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

...
if (VELOC_Init(rank, argv[2]) != VELOC_SUCCESS) {

printf("Error initializing VELOC! Aborting...\n");
exit(2);

}

Initialize VeloC:

Protect essential data structures:

nbLines = (M / nbProcs) + 3;
h = (double *) malloc(sizeof(double *) * M * nbLines);
g = (double *) malloc(sizeof(double *) * M * nbLines);
initData(nbLines, M, rank, g);
...
VELOC_Mem_protect(0, &i, 1, sizeof(int));
VELOC_Mem_protect(1, h, M * nbLines, sizeof(double));
VELOC_Mem_protect(2, g, M * nbLines, sizeof(double));

37 Exascale Computing Project

Third Step: Solution Part 2

int v = VELOC_Restart_test("heatdis", 0);
if (v > 0) {

printf("Previous checkpoint at iteration %d, initiating restart...\n", v);
assert(VELOC_Restart("heatdis", v) == VELOC_SUCCESS);

} else // no previous checkpoint found
i = 0;

Check if a previous checkpoint exists & restore essential data structures:

38 Exascale Computing Project

Third Step: Solution Part 3

while(i < ITER_TIMES) {
err = doWork(nbProcs, rank, M, nbLines, g, h);
if (((i % ITER_OUT) == 0) && (rank == 0))

printf("Step : %d, error = %f\n", i, globalerr);
if ((i % REDUCE) == 0)

MPI_Allreduce(&err, &globalerr, 1, MPI_DOUBLE, MPI_MAX,
MPI_COMM_WORLD);

if (globalerr < PRECISION)
break;

i++;
if (i % CKPT_FREQ == 0) {
// wait for previous checkpoint to finish (only in async mode)

assert(VELOC_Checkpoint_wait() == VELOC_SUCCESS);
// capture the protected data structures

assert(VELOC_Checkpoint("heatdis", i) == VELOC_SUCCESS);
}

}
...
VELOC_Finalize();
MPI_Finalize();

Inside the main loop, checkpoint each CKPT_FREQ iterations:

39 Exascale Computing Project

Fourth Step: Configure VELOC & Run

scratch = ./scratch
persistent = ./persistent
mode = sync

Create veloc.cfg, then specify the path to the local scratch directory (L0), persistent PFS
directory (L3) and mode of operation (minimum mandatory parameters). L2 is disabled for a
single node. The directories will be created automatically by VELOC if they don’t exist.

Run the application with VELOC up to iteration 250. Confirm VELOC created checkpoints:

$ mpirun -np 4 heatdis 256 veloc.cfg
$ ls -Al ./scratch

Kill the application (Ctrl+C), then run again. The application will pick up from
where it left. Check the final result to confirm correctness.

Consult the documentation to learn about more configuration parameters:
https://veloc.readthedocs.io/en/latest/userguide.html

https://veloc.readthedocs.io/en/latest/userguide.html

40 Exascale Computing Project

Bonus: Asynchronous Mode

scratch = ./scratch
persistent = ./persistent
mode = async

Edit veloc.cfg to activate the asynchronous mode:

Remove all previous checkpoints and start the active backend:

$ rm -rf scratch persistent
$ veloc-backend veloc.cfg

Run the application in a different terminal, same as in sync mode:

$. create-aliases.sh
$ mpirun -np 4 heatdis 256 veloc.cfg

41 Exascale Computing Project

Feel free to visit our web site:

http://veloc.rtfd.io

Thank you!

