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ULFM: API extensions to “repair MPI” 

•  Flexible:  
•  Must accommodate all application recovery patterns 
•  No particular model favored 
•  Application directs recovery, pays only the necessary cost 

•  Performance: 
•  Protective actions outside of critical communication routines 
•  Unmodified collective, rendez-vous, rma algorithms 
•  Encourages a reactive programming style (diminish failure free overhead) 

•  Productivity: 
•  Backward compatible with non-FT applications 
•  A few simple concepts enable FT support 
•  Key concepts to support abstract models, libraries, languages, runtimes, etc 
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User Level Failure Mitigation: a set of MPI interface extensions to 
enable MPI programs to restore MPI communication capabilities 
disabled by failures 



Application Recovery Patterns 
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Minimal Feature Set for FT 

• Failure Notification 
• Error Propagation 
• Error Recovery 

Not all recovery strategies require all of these 
features, that’s why the interface splits 
notification, propagation and recovery 
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Implementation in Open MPI 

•  It works! Performance is good! 
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Sequoia AMG is an unstructured physics mesh application with a complex 
communication pattern that employs both point-to-point and collective 
operations. Its failure free performance is unchanged whether it is deployed 
with ULFM or normal Open MPI. 

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes 
message test. The connectivity and bandwidth between rank 0 and rank 1 
are unaffected by failure handling activities at rank 2.
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User activities 

•  ORNL: Molecular Dynamic simulation 
•  Employs coordinated user-level C/R, in place 

restart with Shrink 

•  UAB: transactional FT programming model 
•  Tsukuba: Phalanx Master-worker 

framework 
•  Georgia University: Wang Landau Polymer 

Freezing and Collapse  
•  Employs two-level communication scheme 

with group checkpoints 
•  Upon failure, the tightly coupled group 

restarts from checkpoint, the other distant 
groups continue undisturbed 

•  Sandia: PDE sparse solver 
•  INRIA: Sparse PDE solver 
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•  Cray: CREST miniapps, PDE solver Schwartz, 
PPStee (Mesh, automotive), HemeLB (Lattice 
Boltzmann) 

•  UTK: FTLA (dense Linear Algebra) 
•  Employs ABFT 
•  FTQR returns an error to the app, App calls new 

BLACS repair constructs (spawn new processes 
with MPI_COMM_SPAWN), and re-enters FTQR to 
resume (ABFT recovery embedded) 

•  ETH Zurich: Monte-Carlo 
•  Upon failure, shrink the global communicator 

(that contains spares) to recreate the same 
domain decomposition, restart MC with same 
rank mapping as before 

(a) failure-free (b) few failures (c) many failures

Figure 5. Results of the FT-MLMC implementation for three different failure scenarios.

In Fig. 5 we show three different results, the mean of the density ⇢ at t = 0.06s,
obtained by FT-MLMC. The result in Fig. 5(a) is computed failure-free. In Fig. 5(b) a
result is shown where 3 out of 46 processes where killed. Figure 5(c) shows the result of
a FT-MLMC run where 9 out of 46 processes where killed, among them both processes
dealing with levels 2, such that all samples of this level are missing. The deterioration of
the result is obvious.

In Fig. 6 several quantities of the FT-MLMC method for different MTBFs are pre-
sented. They are discussed in the next section. Figure 6(a) presents two measurements
for the “intermediate save” strategy. (The results for the “late save” strategy are similar.)
First, we show the percentage of processes failed during the computation. Second, the “at
least a failure” probability is shown which measures the fraction of FT-MLMC runs that
experience at least one failure. (All other FT-MLMC runs are failure-free.) Remember
that standard MPI crashes if a failure occurs.

The measurement of the FT-MLMC error versus MTBF is shown in Fig. 6(b). The
error of the failure-free ALSVID-UQ is shown at MTBF = 2 ·104 s, where the fault
tolerant strategies (“intermediate save” and “late save”) are of the same quality. For
MTBF > 200 s the error remains rather constant. This can be seen for MTBF < 200 s
where the error slightly grows. It explodes at MTBF < 40 s for the “late save” strategy,
and at MTBF < 20 s for the “intermediate save” strategy.

Figure 6(c) shows the measured wall-clock run-time for the two fault tolerant strate-
gies and the failure-free run. Between the two fault tolerant versions no significant dif-
ference is measured. At MTBF = 2 ·104 s we see the small overhead (around 5%) of
both fault tolerant runs, compared to the standard failure-free ALSVID-UQ implemen-
tation. For the fault tolerant versions the run-time remains approximately constant for
MTBF > 100 s. Then the run-time decreases.

Figure 6(d) presents two measurements for the “intermediate save” strategy. (The re-
sults for the “late save” strategy are similar.) The first measurement “all samples failed”
shows how often no samples at all could be computed, since too many processes failed.
Then no FT-MLMC result is computed, such that these runs are ignored in the error com-
putation of Fig. 6(b). The same holds for runs which crashed (indicated by “program
crashed”).

Credits: ETH Zurich 
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epcc|cresta
Visual Identity Designs

CREST
HemeLB HemeLB 

Asynchronous optimized 
Schwarz methods 

Asynchronous optimized 
Schwarz methods 

PPSTee PPSTee 

● Applications chosen as representative sample of HPC 

● Providing feedback as co-design vehicles 

● Subset appropriate to test  Fault Tolerant MPI 

Collaborative Research into Exascale Systemware, Tools & Applications 
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Processor fails: 
¾ Re-initialize the substitute processor 

with initial solution and continue 
solving 

Asynchronous Schwarz Methods Asynchronous Schwarz Methods 

PDE Solver with independent local Iteration Counters 
 Ecole Centrale Paris 
 

P0 

P1 

P2 

P4 

Iteration ● Domain decomposition with 
independent, asynchronous boundary 
exchange 

● Converges independent of local 
iteration counters 
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● Domain decomposition with 
independent, asynchronous boundary 
exchange 

● Converges independent of local 
iteration counters 

Asynchronous Schwarz Methods Asynchronous Schwarz Methods 

PDE Solver with independent local Iteration Counters 
 Ecole Centrale Paris 
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HemeLB HemeLB 

Lattice Boltzmann Flow Solver 
 University College London 
 

Processor fails 
¾ Re-initialize substitute processor 

with average mass flow, velocity 
from neighbors  
passable error in domain size and 
magnitude if real solution sufficiently smooth 
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Long running computations  
¾ Small errors can be eliminated 

by numerical procedure 

HemeLB HemeLB 

Lattice Boltzmann Flow Solver 
 University College London 
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● Load data used to steer dynamic re-meshing 
● Core simulation 
● Post-processing 
● Visualization 
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Pre-processing Steering Interface 
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Processor fails: 
¾ Trigger re-distribution of work on remaining processors 

(weight=0 on the failed processor) 

PPSTee PPSTee 

Pre-processing Steering Interface 
 German Aerospace Center (DLR) 

Work Work PPSTee PPSTee 
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U-GA: Wang-Landau polymer Freeze 
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•  Long independent 
computation on each 
processor 
•  Dataset protected by small, cheap 

checkpoints (stored on neighbors) 

•  Periodically, an 
AllReduce on the 
communicator of the 
Energy window 
•  Immediately after, a 

Scatter and many pt2pt 
on the communicator 
linking neighboring 
energy windows 

Revoke(2) 
Shrink(2) 
Spawn(2,spare) 
Merge(2) Reorder(2) 
Load checkpoint 
Revoke(2) Free(2) 
Connect(2) Accept(3) 
Merge(2) Reorder 
 



ETH-Zurich: Monte-Carlo PDE 
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Intrinsic Fault Tolerance of MC Introduction into MLMC Fault Tolerant Implementation Results Conclusion

Introduction into Multi Level Monte Carlo

X is the solution to a stochastic PDE

Each sample X i is computed with a FVM solver

MC error is determined by
stochastic error (depends on M)
discretization error (depends on the mesh-width h)

A more accurate MC approximation requires more samples M
and a finer mesh h

Intrinsic Fault Tolerance of MC Introduction into MLMC Fault Tolerant Implementation Results Conclusion

Derive the Fault Tolerance of Monte Carlo

Standard Monte Carlo:

Estimate the expected value E[X ] of a random variable X

EM [X ] := 1

M

MP
i=1

X i

kE[X ]� EM [X ]k  1p
M
kXk

Fault Tolerant Monte Carlo:

The number of samples M turns into a random variable M̂

kE[X ]� E
ˆM [X ]k  E

"
1p
M̂

#
kXk



ETH-Zurich: Monte-Carlo PDE 
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Intrinsic Fault Tolerance of MC Introduction into MLMC Fault Tolerant Implementation Results Conclusion

Phase 3: Fault Tolerant ALSVID-UQ

(finest) level = 5 level = 3

16&32

levels = 1 & 0

442 2 8 8 ...1 1

16x 16x  4x  4x

level = 4 level = 2

level roots

Try to collect the mean as in fault-free ALSVID-UQ

Call MPI BARRIER on MPI COMM WORLD at the end to discover
failed processes

non-uniform success of MPI BARRIER: MPI BARRIER is
followed by MPI COMM AGREE

In case of failure: (Re)assign the level roots and repeat the
collection of the means
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Intrinsic Fault Tolerance of MC Introduction into MLMC Fault Tolerant Implementation Results Conclusion

Small overhead (⇡ 5%) in the run-time compared to the
fault-free ALSVID-UQ

Large samples are likely to abort in the presence of a high
failure rate ! reduced runtime



ANU/Sandia: Sparse PDE 

16 
Full slides deck available from http://cs.anu.edu.au/Peter.Strazdins/seminars 
 

SNL May 2014 Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver 4

4 Two-dimension PDE Solver: Recovery Methods

• replication/re-
sampling:
recover grids 0–3
from duplicate grids
7–10;
recover grids 4–6 via
resampling from grid
0–3

• alternate combina-
tion:
lost grid g 2 {0..6}
is ignored; final result
(sparse grid) is con-
structed via a subset
of {0..6, 11..13}� {g}

JJ J • I II ⇥



ANU/Sandia: Sparse PDE 
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SNL May 2014 Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver 5

5 Recovery Methods: Alternate Combination Formula

• uses extra set of smaller sub-grids on a 3rd (next lower) diagonal
(modest amount of extra overhead)

• for a single failure on a fine sub-grid, can find a new combination with
an inclusion/exclusion principle avoiding the failed sub-grid

• also works for many (but not all) cases of multiple failures

• if the failure is on 2nd diagonal, can similarly use a 4th (lower) diagonal
to avoid this

JJ J • I II ⇥



ANU/Sandia: Sparse PDE 
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SNL May 2014 Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver 7

7 Fault Recovery Procedure: Detect Failed Process

0 1 2 3 4 5 6

Process 3 and 5 on parent fail
0 1 2 3 4 5 6

Shrink the communicator and spawn
failed processes as child with rank 0 and 1

0 1 2 4 6 0 1

Use intercommunicator merge to assign
the two highest ranks to the newly created

0 1 2 3 4 5 6

Sending failed ranks from parent to the
two highest ranks on child and split the

communicator with the same color to assign

0 1 2 4 6 3 5

Changing child to parent

0 1 2 4 6 3 5

Parent

Child

A communicator with global size 7

processes on child part

rank 3 and 5 to the child processes to order
the ranks as it was before the failure

• can detect failed processes as fol-
lows:

• attach an error handler en-
suring failures get acknowl-
edged on (original) communi-
cator comm

• call MPI Barrier(comm); if fails:
• revoke it via
MPI Comm revoke(comm)

and create shrunken
communicator via
OMPI Comm shrink(comm, &scomm)

• use
MPI Group difference(..., &fg)

to make a globally consistent
list of failed processes

JJ J • I II ⇥



ANU/Sandia: Sparse PDE 
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SNL May 2014 Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver 12

12 Results: Scalability
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• results on OPL cluster, max.
resolution of 213

• in terms of absolute time,
CR is always more longer
(however, uses fewer pro-
cesses)

• RC and AC also show best
scalability

• plots for 2 failures erratic
due to high overheads in �
version of ULFM MPI

JJ J • I II ⇥

RC=Replication/resampling 
AC=Alternate recombination 
CR=Checkpoint/Restart 

OPL cluster node: 2x6 cores Xeon5670, QDR IB 



ANU/Sandia: GENE application 
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SNL May 2014 Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver 13

13 Fault Recovery of a Real Application - GENE

• GENE: Gyrokinetic Electromag-
netic Numerical Experiment

• plasma microturbulence code
• multidimensional solver of

Vlasov equation
• fixed grid in five-dimensional

phase space (x||, x?, xr, v||, v?)
• computes gyroradius-scale fluctuations and transport coefficients

• these fields are the main output of GENE

• hybrid MPI/OpenMP parallelization – high scalability to 2K cores

• dimensions are limited to powers of two

• sparse grid combination technique has yielded good results!

• physical system is relatively homogeneous

JJ J • I II ⇥
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14 GENE: Implementation and Preliminary Results

• apply combination technique over density function in 5D phase space

• modify GENE to run appropriate problem instances simultaneously

• use BINDC utilize to call into C++ communicator constructor and com-
bination algorithm code

• a communicator split off MPI COMM WORLD is passed back to each sub-
set of process implementing a GENE instance

• used an ‘initial value’ simulation on for a ‘full-grid’ of (x|| = 1, x? = 64, xr =
64, v|| = 128, v? = 128) applying l = 4 combination technique on (v||, v?)
for 100 timesteps

cores tg tc �tf tG
49 48.9 3.4 1.0 107.6
98 36.8 3.8 7.4 65.3

196 63.2 11.5 19.9 98.7

times: tg for GENE instance
tc for comb. alg.
�tf extra for one failure
tG for full-grid GENE instance

• relative error from full-grid GENE instance: 3.0E-04

JJ J • I II ⇥



AIST: Runtime System 

•  Falanx dataflow runtime 
•  Advanced Master-worker with 

parallel (MPI) worker jobs 
•  All complexity of MPI (and 

ULFM) masked inside the 
runtime J 
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tions, ranging from weather forecasting[8] to molecular sim-
ulations[9], were developed by using Ninf-G, in which the
fault resilience was implemented to sustain long calculations.
We have also developed a resource management middleware
on top of Ninf-G[5], which works as an abstraction layer of
the computational resources, and effectively isolates a main
logic of applications from resource management. These Grid
middleware allowed us to conduct 19 days/150k CPU·hrs of
QM/MD simulations on US-Japan supercomputer Grid, and
70 days of FMO calculations on PRAGMA-OSG testbed. In
these Grid applications, multiple RPC calls are issued con-
currently, and each RPC call is processed by MPI. This hi-
erarchical parallelism based on the coarse-grained Grid and
the fine-grained MPI environments enabled us to achieve
massive scalability of the Grid applications. The fault re-
silience was realized by taking every RPC call as a restart-
ing unit; when a failure on a resource is detected, RPC calls
processed on the resource are discarded and re-issued on the
other resources. We believe that our fault resilience model
based on the hierarchical parallelism is also appropriate on
the exascale environment. In addition, the tightly connected
nature of the exascale environment, which was not available
on the Grid, may extends the applicability of the program-
ming model. Based on the insight on both environments,
we have designed a fault resilient abstraction layer, named
Falanx. In this workshop, we hope to discuss on our mid-
dleware approach, especially considering similarities and dis-
similarities between the exascale environment and the Grid.

Falanx is developed intending to reduce a programming ef-
fort to implement fault resilience in exascale applications.
It creates a runtime environment on-the-fly, which is de-
signed to be stable enough to sustain for a single execution
of applications. The runtime is equipped with a resource
management system and a durable data store. By accessing
computational resources indirectly via the runtime, applica-
tions can be made immune to failures among the resources.
Our position in designing Falanx is described below in more
detail.

2. OUTLINE OF FALANX
Based on our Grid experience, we have employed the master-
worker programming model for Falanx, where application
programmers design applications as a task workflow. In-
dependent tasks are processed concurrently on individual
workers. By assigning multiple computational resources to a
worker, each task may further be processed in a fine-grained
parallel. To achieve the fault resilience, it is necessary to de-
tect failed workers and tasks, to reassign the failed tasks to
other workers, and to keep track of the dead-or-alive states of
workers. Besides, it is also important to protect intermedi-
ate data of the calculation from failures. Both the resource
management and the data protection require complicated
coding, if application programmers were to use the system-
level failure mitigation features directly.

The design goal of Falanx is making the development of exas-
cale applications easier, by providing a fault resilient runtime
as a middleware. The runtime is equipped with a resource
management system (RMS) and a durable data store (DDS),
which handle the coordination of computational resources
and the data protection, respectively. A schematic struc-
ture of Falanx applications is shown in Fig. 1. Application

Falanx RuntimeFMaster process
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Generate tasks

Process results

Assign tasks 
over workers

Notify results Task n
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Task 3

in MPI
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in MPI 3

in MPI
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Figure 1: A schematic structure of a Falanx appli-

cation.

Application

To implement fault resilience:
(1) Design application as task workflow
(2) Schedule tasks on available resources
(3) Protect intermediate data from failure

Middleware

Falanx application:

Traditional approach: Complex codings
are required.

Resource Management
(2) Schedule tasks on available 

resources

Durable Data Store
(3) Protect intermediate data 

from failure

Low-level functions for failure mitigation of ULFM-MPI

Application
(1) Design application as task workflow

Low-level functions for failure mitigation by ULFM-MPI

Can focus on the
application logic!

Figure 2: Implementation of fault resilience with

and without Falanx.

programmers code the task workflow in the master process
by using a set of RMS APIs. Each task may be coded as a
traditional MPI program of 100 ∼ 10000 parallelism, with
few care about system failures. Thus constructed work-
flow is processed by RMS, which schedules tasks over avail-
able workers. The number of workers may vary between
10000 ∼ 100, depending on the parallelism of tasks. Each
task is taken as a restarting unit for the fault resilience;
when a failure occurs, the failed worker is stopped and the
failed task is rescheduled, and if possible, the failed worker
is reconstructed and restarted. Intermediate data of the
calculation, including input/output of tasks, are stored in
DDS, where data are implicitly replicated to prevent data
loss due to failures. In other words, the Falanx runtime
works as built-in scheduler and storage, both of which are
tuned to handle finer grained tasks than system level batch
schedulers and global storages. The Falanx solution for the
fault resilience is compared with the conventional approach
in Fig. 2. With Falanx, application programmers need not
care about computational resources to assign tasks and to

Credits: Ikigamo et al. (AIST) 
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UAB: transactional model 
•  Amin Hassani and Anthony Skjellum 

presented this idea 1 year ago 
•  Amin has implemented the core 

concepts of FA-MPI on top of ULFM 
MPI 

•  Provides a higher level abstraction 
than ULFM (but more targeted to a 
particular programming style) 
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TryBlocks and progress forward or backward based on the
failure types. A basic pseudo code for an application using
FA-MPI is shown in Algorithm 1.

communication initialization;
if restarted then

load data from last checkpoint (optional);
end
repeat

while more work to do do
MPI TryBlock start();
computation, communication and/or I/O;
wait for operations to finish;
inject local errors;
MPI TryBlock finish();
if failure happened then

isolate and mitigate the failure;
if recovery needed then break;

end
periodically checkpoint;

end
if recovery needed then

do recovery procedure;
end

until more work to do or restart needed ;

Algorithm 1: A basic application using FA-MPI

FA-MPI doesn’t restrict mechanisms used to implement
the semantics of TryBlocks. Any implementation may use
a consensus algorithm through piggybacking, gossiping, col-
lective, a hybrid algorithm, and/or other methods for broad-
casting failure information to alive ranks. Some recent pub-
lications [3] on implementation of consensus problem can be
used to synchronize failures in TryBlock completion.
Failure Injection. FA-MPI proposes a fault-injection

mechanism to allow both applications and the MPI imple-
mentation to collaborate consistently to detect and notify
failures and resolve them with each other’s help. The coor-
dination can be done by allowing both the application and
MPI library to detect and “inject” errors on requests, ob-
jects, and state of the MPI inside a TryBlock and retrieve
the errors at the completion of the TryBlock. For example,
This approach allows the application to use an ABFT ap-
proach, such as a checksum calculation on the result of a
computation or communication and simply notify the other
ranks of the failure in TryBlock completion and make a de-
cision from there.
Local Completion. TryBlock completion calls need com-

munication operation request handles to perform error de-
tection and notification, but local completion functions like
MPI_Wait destroys request handles on successful return. This
behavior is insufficient if the application needs completion of
a communication request before TryBlock completion call,
or if it needs to check the request’s failure state. To be able
to take advantage of error notification to MPI implementa-
tion, request handles should not be freed until the TryBlock
completion call. To solve this problem we introduced a few
local completion functions that do not destroy requests after
completion.
Timeout. A timeout is an effective mechanism to handle

exceptional behaviors, such as delay in response or remote
failure. FA-MPI uses timeout semantic to allow applications

variable granularity for trying (and failing) a transaction.

3. ISOLATION, MITIGATION, RECOVERY
Sometimes continuing work with a sick communicator is

impossible. FA-MPI provides API calls to shrink a faulty
communicator (and continue work with the new smaller com-
municator)1 and possibly regrow it later by spawning new
processes and merge all ranks into a new communicator.
FA-MPI maintains single-assignment properties of MPI ob-
jects (communicators, windows, and files) and repairing or
modifying any of these objects is not implied.

Recovery comprises another block of computation and
communication and should be handled in a TryBlock even
in the presence of faults. Any failure during recovery can re-
sult in retry or rollback to the last checkpoint. All of these
potential scenarios can be policies decided by an application
using FA-MPI.

4. FAULT-FREE OVERHEAD
We expect that applications using FA-MPI will be able

to run longer on larger machines in compare to a non-fault-
tolerant version of the application. In order to achieve re-
siliency, sacrifice in performance cannot be avoided. We
allow applications to run slightly slower but with enough
forward progress to reach the completion of execution. FA-
MPI allows the application to control the fault-free overhead
by setting the granularity of synchronization.

5. CONCLUSION AND FUTURE WORK
FA-MPI is a set of extension APIs for MPI standard to

allow fault-awareness using a transactional model. FA-MPI
detects and propagates failures in non-blocking communica-
tion calls, and notifies application of the failures. We expect
applications using FA-MPI run to completion with higher
probability than the non-fault-aware versions. We are cur-
rently developing the proposed API and we will publish fur-
ther results in near future publications.F
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int MPIX_Comm_replace(MPI_Comm comm, MPI_Comm *newcomm) { 
 MPI_Comm shrinked, spawned, merged; 
 int rc, flag, flagr, nc, ns; 

 
 redo: 
   MPI_Comm_shrink(comm, &shrinked); 
   MPI_Comm_size(comm, &nc); MPI_Comm_size(shrinked, &ns); 
   rc = MPI_Comm_spawn(…, nc-ns, …, 0, shrinked, &spawned, …); 
   flag = MPI_SUCCESS==rc; 
   MPI_Comm_agree(shrinked, &flag); 
   if( !flag ) { 
     if(MPI_SUCCESS == rc) MPI_Comm_free(&spawned); 
     MPI_Comm_free(&shrinked); 
     goto redo; 
   } 
    rc = MPI_Intercomm_merge(spawned, 0, &merged); 
   flagr = flag = MPI_SUCCESS==rc; 
   MPI_Comm_agree(shrinked, &flag); 
   MPI_Comm_agree(spawned, &flagr); 
   if( !flag || !flagr ) { 
     if(MPI_SUCCESS == rc) MPI_Comm_free(&merged); 
     MPI_Comm_free(&spawned); 
     MPI_Comm_free(&shrinked); 
     goto redo; 
   } 
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int MPIX_Comm_replace(MPI_Comm comm, MPI_Comm *newcomm) { 
 …  

/* merged contains a replacement for comm, ranks are not ordered properly */ 
 int c_rank, s_rank; 
 MPI_Comm_rank(comm, &c_rank); 
 MPI_Comm_rank(shrinked, &s_rank); 
 if( 0 == s_rank ) { 
   MPI_Comm_grp c_grp, s_grp, f_grp; int nf; 
   MPI_Comm_group(comm, &c_grp); MPI_Comm_group(shrinked, s_grp); 
   MPI_Group_difference(c_grp, s_grp, &f_grp); 
   MPI_Group_size(f_grp, &nf); 
   for(int r_rank=0; r_rank<nf; r_rank++) { 
     int f_rank; 
     MPI_Group_translate_ranks(f_grp, 1, &r_rank, c_grp, f_rank); 
     MPI_Send(&f_rank, 1, MPI_INT, r_rank, 0, spawned); 
   } 
 } 
 rc = MPI_Comm_split(merged, 0, c_rank, newcomm); 
 flag = (MPI_SUCCESS==rc); 
 MPI_Comm_agree(merged, &flag); 
 if( !flag ) { goto redo; } // (removed the Free clutter here) 
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int checkpoint_restart(MPI_Comm *comm) { 
  int rc, flag; 
 checkpoint_in_memory(); // store a local copy of my checkpoint 
 rc = checkpoint_to(*comm, (myrank+1)%np); //store a copy on myrank+1 
 flag = (MPI_SUCCESS==rc); MPI_Comm_agree(*comm, &flag);  
 if( !flag ) { // if checkpoint fails, we need restart! 
   MPI_Comm newcomm; int f_rank; int nf; 
    MPI_Group c_grp, n_grp, f_grp; 

redo: 
   MPIX_Comm_replace(*comm, &newcomm); 
   MPI_Comm_group(*comm, &c_grp); MPI_Comm_group(newgroup, &n_grp); 
   MPI_Comm_difference(c_grp, n_grp, &f_grp); 
   MPI_Group_size(f_grp, &nf); 
    for(int i=0; i<nf; i++) { 
     MPI_Group_translate_ranks(f_grp, 1, &i, c_grp, &f_rank); 
     if( (myrank+np-1)%np == f_rank ) { 
       serve_checkpoint_to(newcomm, f_rank); 
     } 
   } 
    MPI_Group_free(&n_grp); MPI_Group_free(&c_grp); MPI_Group_free(&f_grp); 
   rc = MPI_Barrier(newcomm); 
   flag=(MPI_SUCCESS==rc); MPI_Comm_agree(*comm, &flag); 
   if( !flag ) goto redo; // again, all free clutter not shown  
   restart_from_memory(); // rollback from local memory 
   MPI_Comm_free(comm); 
   *comm = newcomm; 
 } 

} 
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Future directions 
•  Transient failures 
•  Implementations can work around transient failures by “promoting” them to 

fail-stop 
•  This proposal does not talk about them (on purpose, to leave room for future 

directions) 

• KISS for C/R 
•  This proposal supports C/R and restart with same proc number 
•  It is however not necessarily easy to write with a deep call stack 
•  We would like to explore addition of “revoke_all” that destroys all 

communicators (and possibly more of the MPI objects), to automate “wiping 
out” MPI state and reconstruct only MPI_COMM_WORLD 

• Conditional init of FT, introspection 
•  Turn on FT support only if MPI init has special parameters 
•  Dependent on fate of external tickets (MPI_Init_with_info) 
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Thank you 

To know more… 
http://fault-tolerance.org/ulfm/ 
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More performance:  
synthetic benchmarks 
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5 Performance Analysis

The following analysis used a prototype of the ULFM proposal based on the
development trunk of Open MPI [12] (r26237). The test results presented were
gathered from the Smoky system at Oak Ridge National Laboratory. Each node
contains four quad-core 2.0 GHz AMD Opteron processors with 2 GB of memory
per compute core. Compute nodes are connected with gigabit Ethernet and
InfiniBand. Some shared-memory benchmarks were conducted on Romulus, a
6⇥ 8-core AMD Opteron 6180 SE with 256GB of memory (32GB per socket) at
the University of Tennessee.

The NetPIPE benchmark (v3.7) was used to assess the 1-byte latency and
bandwidth impact of the modifications necessary for the ULFM support in Open
MPI. We compare the vanilla version of Open MPI (r26237) with the ULFM
enabled version on Smoky. Table 1 highlights the fact that the di↵erences in
performance are well below the noise limit, and that the standard deviation is
negligible proving the performance stability and lack of impact.

1-byte Latency (microseconds) (cache hot)
Interconnect Vanilla Std. Dev. Enabled Std. Dev. Di↵erence

Shared Memory 0.8008 0.0093 0.8016 0.0161 0.0008
TCP 10.2564 0.0946 10.2776 0.1065 0.0212
OpenIB 4.9637 0.0018 4.9650 0.0022 0.0013

Bandwidth (Mbps) (cache hot)
Interconnect Vanilla Std. Dev. Enabled Std. Dev. Di↵erence

Shared Memory 10,625.92 23.46 10,602.68 30.73 -23.24
TCP 6,311.38 14.42 6,302.75 10.72 -8.63
OpenIB 9,688.85 3.29 9,689.13 3.77 0.28

Table 1. NetPIPE results on Smoky.

The impact on shared memory systems, which are sensitive even to small
modifications of the MPI library, has been further assessed on the Romulus
machine – a large shared memory machine – using the IMB benchmark suite
(v3.2.3). As shown in Figure 1, the duration di↵erence of all the benchmarks
(point-to-point and collective) remains below 5%, thus within the standard de-
viation of the implementation on that machine.

To measure the impact of the prototype on a real application, we used the
Sequoia AMG benchmark6. This MPI intensive benchmark is an Algebraic Mult-
Grid (AMG) linear system solver for unstructured mesh physics. A weak scaling
study was conducted up to 512 processes following the problem Set 5. In Fig-
ure 2, we compare the time slicing of three main phases (Solve, Setup, and
SStruct) of the benchmark, with, side by side, the vanilla version of the Open
MPI implementation, and the ULFM enabled one. The application itself is not
fault tolerant and does not use the features proposed in ULFM. The goal of
this benchmark is to demonstrate that a careful implementation of the proposed

6 https://asc.llnl.gov/sequoia/benchmarks/#amg
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Fig. 1. The Intel MPI Benchmarks: relative di↵erence between ULFM and the vanilla
Open MPI on shared memory (Romulus). Standard deviation ⇡5% on 1,000 runs.

semantic does not impact the performance of the MPI implementation, and ul-
timately leaves unchanged the behavior and performance of legacy applications.
The results show that the performance di↵erence is negligible.
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Fig. 3. Evaluation of the Fault Injection
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scales (Smoky).

To assess the overheads of recovery constructs, we developed a synthetic
benchmark that mimics the behavior of a typical fixed-size tightly-coupled fault-
tolerant application. Unlike a normal application it performs an infinite loop,
where each iteration contains a failure and the corresponding recovery procedure.
Each iteration consists of 5 phases: in the first phase (Detection), all processes
but a designated victim enter a Barrier on the intracommunicator. The victim
dies, and the failure detection mechanism makes all surviving processes exit the
Barrier, some with an error code. In Phase 2 (Revoke), the surviving processes
that detected a process-failure related error during the previous phase invoke the
new construct MPI_COMM_REVOKE. Then they proceed to Phase 3 (Shrink) where
the intracommunicator is shrunk using MPI_COMM_SHRINK. The two other phases
serve to repair a full-size intracommunicator using spawn and intercommunicator
merge operations to allow the benchmark to proceed to the next round.

Collective communications: 
48 core shared memory (very stressful) 
Performance difference is less than  
 std-deviation 



Failure Notification 
• Notification of failures is local only 
•  New error MPI_ERR_PROC_FAILED Raised when a communication with a 

targeted process fails 

•  In an operation (collective), some process may 
succeed while other raise an error 
•  Bcast might succeed for the top of the tree, but fail for some subtree rooted 

on a failed process 

• ANY_SOURCE must raise an exception 
•  the dead could be the expected sender 
•  Raise error MPI_ERR_PROC_FAILED_PENDING, preserve matching order 
•  The application can complete the recv later (MPI_COMM_FAILURE_ACK()) 

• Exceptions indicate an operation failed 
•  To know what process failed, apps call MPI_COMM_FAILURE_ACK(), 

MPI_COMM_FAILURE_GET_ACKED() 
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App using notification only 
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Master

W1

W2

Wn

Send (W1,T1)
Submit T1

Send (W2,T1)
Resubmit

Recv (ANY)
Detected W1

• Error notifications do not break MPI 
•  App can continue to communicate on the communicator 
•  More errors may be raised if the op cannot complete (typically, most collective 

ops are expected to fail), but p2p between non-failed processes works 

•  In this Master-Worker example, we can continue 
w/o recovery! 
•  Master sees a worker failed 
•  Resubmit the lost work unit onto another worker 
•  Quietly continue 



App using propagation only 

•  Application does only p2p communications 
•  P1 fails, P2 raises an error and wants to change comm 

pattern to do application recovery 
•  but P3..Pn are stuck in their posted recv 
•  P2 unlocks them with Revoke 
•  P3..Pn join P2 in the new recovery p2p communication 

pattern 
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Recv(P1): failure
P2 calls RevokeP1

P2

P3

Pn

Recv(P1) Recv(P1): revoked

Recovery



Error Recovery 

• Restores full communication capability (all 
collective ops, etc). 
• MPI_COMM_SHRINK(comm, newcomm) 
•  Creates a new communicator excluding failed processes 
•  New failures are absorbed during the operation 
•  The communicator can be restored to full size with MPI_COMM_SPAWN 
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Error Agreement 

• When in need to decide if there is a failure and 
if the condition is recoverable (collectively) 
•  MPI_COMM_AGREE(comm, flag) 

•  Fault tolerant agreement over boolean flag 
•  Unexpected failures (not acknowledged before the call) 

raise MPI_ERR_PROC_FAILED 
•  The flag can be used to compute a user condition, even 

when there are failures in comm 

• Can be used as a global failure detector 
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