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ULFM: API extensions to “repair MPI”

User Level Failure Mitigation: a set of MPI interface extensions to
enable MPI programs to restore MPlI communication capabilities

disabled by failures

 Flexible:
« Must accommodate all application recovery patterns
* No particular model favored
» Application directs recovery, pays only the necessary cost

« Performance:
» Protective actions outside of critical communication routines
« Unmodified collective, rendez-vous, rma algorithms
» Encourages a reactive programming style (diminish failure free overhead)

* Productivity:
« Backward compatible with non-FT applications
« A few simple concepts enable FT support
» Key concepts to support abstract models, libraries, languages, runtimes, etc




Application Recovery Patterns

Coordinated Checkpoint/Restart, Automatic, Naturally Fault Tolerant Applications, Master-Worker,
Compiler Assisted, User-driven Checkpointing, etc. Domain Decomposition, etc.
In-place restart (i.e., without disposing of non-failed processes) Application continues a simple communication pattern,
accelerates recovery, permits in-memory checkpoint ignoring failures
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Specification
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Minimal Feature Set for FT

 Failure Notification
* Error Propagation
* Error Recovery

Not all recovery strategies require all of these
features, that’s why the interface splits
notification, propagation and recovery




Implementation in Open MPI

* [t works! Performance is good!

Sequoia AMG Performance with Fault Tolerance

N6n-FT is fasier

ULFM is faster
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Sequoia AMG is an unstructured physics mesh application with a complex
communication pattern that employs both point-to-point and collective
operations. Its failure free performance is unchanged whether it is deployed

with ULFM or normal Open MPI.

ULFM Fault Tolerant MPI Performance with failures
IMB Ping-pong between ranks 0 and 1 (IB20G)
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The failure of rank 3 is detected and managed by rank 2 during the 512 bytes
message test. The connectivity and bandwidth between rank 0 and rank 1
are unaffected by failure handling activities at rank 2.

Thanks for CREST, Riken support



User activities

ORNL: Molecular Dynamic simulation

« Employs coordinated user-level C/R, in place
restart with Shrink

UAB: transactional FT programming model

Tsukuba: Phalanx Master-worker
framework

Georgia University: Wang Landau Polymer
Freezing and Collapse

* Employs two-level communication scheme
with group checkpoints

« Upon failure, the tightly coupled group

mean of rho at t=0.06

restarts from checkpoint, the other distant 294 24
groups continue undisturbed 15.0 15.0
Sandia: PDE sparse solver (I
INRIA: Sparse PDE solver >0 >0

(a) failure-free

Cray: CREST miniapps, PDE solver Schwartz,
PPStee (Mesh, automotive), HemelB (Lattice
Boltzmann)

UTK: FTLA (dense Linear Algebra)
«  Employs ABFT

*  FTQR returns an error to the app, App calls new
BLACS repair constructs (spawn new processes
with MPI_COMM_SPAWN), and re-enters FTQR to
resume (ABFT recovery embedded)

ETH Zurich: Monte-Carlo

* Upon failure, shrink the global communicator
(that contains spares) to recreate the same
domain decomposition, restart MC with same
rank mapping as before

mean of rho at t=0.06

(b) few failures

(c) many failures

Figure 5. Results of the FI-MLMC implementation for three different failure scenarios.

Credits: ETH Zurich
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Applications

( )

CREST

Collaborative Research into Exascale Systemware, Tools & Applications

Asynchronous optimized

Schwarz methods

e Applications chosen as representative sample of HPC
e Providing feedback as co-design vehicles

e Subset appropriate to test Fault Tolerant MPI

CRESTQ;

4/11/2013 Fault Tolerance in MPI | EASC 2013 | sachs@cray.com @



Applications

Asynchronous Schwarz Methods

PDE Solver with independent local Iteration Counters

Ecole Centrale Paris

e Domain decomposition with
independent, asynchronous boundary
exchange

e Converges independent of local >

iteration counters

Processor fails:

» Re-initialize the substitute processor
with initial solution and continue
solving

4/11/2013 Fault Tolerance in MPI | EASC 2013 | sachs@cray.com
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Applications

,

Lattice Boltzmann Flow Solver

University College London Long running computations
> Small errors can be eliminated
by numerical procedure

Processor fails

» Re-initialize substitute processor
with average mass flow, velocity
from neighbors

passable error in domain size and
magnitude if real solution sufficiently smooth

X

CRESTQ)

4/11/2013 Fault Tolerance in MPI | EASC 2013 | sachs@cray.com @



Applications

PPSTee |

Pre-processing Steering Interface
German Aerospace Center (DLR)

e Load data used to steer dynamic re-meshing
e Core simulation
e Post-processing
e Visualization

PPSTee

CRESTQ),

4/11/2013 Fault Tolerance in MPI | EASC 2013 | sachs@cray.com



Applications

PPSTee |

Pre-processing Steering Interface
German Aerospace Center (DLR)

Processor fails:

» Trigger re-distribution of work on remaining processors
(weight=0 on the failed processor)

PPSTee

CRESTQ

4/11/2013 Fault Tolerance in MPI | EASC 2013 | sachs@cray.com @
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U-GA: Wang-Landau polymer Freeze

* Long independent
computation on each
processor

« Dataset protected by small, cheap
checkpoints (stored on neighbors)

 Periodically, an
AllIReduce on the
communicator of the
Energy window

* Immediately after, a
Scatter and many pt2pt
on the communicator
linking neighboring
energy windows




ETH-Zurich: Monte-Carlo PDE

@ X Is the solution to a stochastic PDE

o Each sample X' is computed with a FVM solver

o MC error is determined by

o stochastic error (depends on M)
o discretization error (depends on the mesh-width h)

o A more accurate MC approximation requires more samples M

and a finer mesh h

il
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Fault Tolerant Monte Carlo:

@ The number of samples M turns into a random variable M
1
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ETH-Zurich: Monte-Carlo PDE

(finest) level =5 level =4 level =3 level =2 levels =1 & 0
11 2 2 4 4 || 8 8 |[16&32 ...
16x@ | 16xO 1x@ | 4x O ® O ® O
Z z /

level roots @

Try to collect the mean as in fault-free ALSVID-UQ
Call MPI_BARRIER on MPI_COMM_WORLD at the end to discover

failed processes

non-uniform success of MPI_BARRIER: MPI_BARRIER is
followed by MPI_COMM_AGREE

In case of failure: (Re)assign the level roots and repeat the
collection of the means
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Small overhead (= 5%) in the run-time compared to the
fault-free ALSVID-UQ

Large samples are likely to abort in the presence of a high
failure rate — reduced runtime
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ANU/Sandia: Sparse PDE

SNL May 2014 Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver

4 Two-dimension PDE Solver: Recovery Methods

e replication/re-
sampling:
recover grids 0-3
from duplicate grids
7-10;
recover grids 4—6 via
resampling from grid
0-3
e alternate  combina-
tion:
lost grid ¢ € {0..6}
is ignored; final result
ot (sparse grid) is con-
structed via a subset
of {0..6,11..13} — {g}

THE AUSTRALIAN NATIONAL UNIVERSITY

Full slides deck available from http://cs.anu.edu.au/Peter.Strazdins/seminars
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ANU/Sandia: Sparse PDE

SNL May 2014 Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver 5

5 Recovery Methods: Alternate Combination Formula

e uses extra set of smaller sub-grids on a 3rd (next lower) diagonal
(modest amount of extra overhead)

e for a single failure on a fine sub-grid, can find a new combination with
an inclusion/exclusion principle avoiding the failed sub-grid

e also works for many (but not all) cases of multiple failures
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e if the failure is on 2nd diagonal, can similarly use a 4th (lower) diagonal
to avoid this
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ANU/Sandia: Sparse PDE

SNL May 2014 Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver

7 Fault Recovery Procedure: Detect Failed Process

e can detect failed processes as fol-
A communicator with global size 7 lows:

EE DParent
¥

Ty e attach an error handler en-
Process 3 and 5 on parent fail | §Child

NI =]

Shrink the communicator and spawn
failed processes as child with rank 0 and 1

m e o o

Use intercommunicator merge to assign
the two highest ranks to the newly created
processes on child part

i [ 68 [ T T

Sending failed ranks from parent to the
two highest ranks on child and split the
communicator with the same color to assign
rank 3 and 5 to the child processes to order
the ranks as it was before the failure

[N | EN | [ EY [ X R
Changing Ch\*ﬂd to parent

N [N [N |3 3 (A

suring failures get acknowl-
edged on (original) communi-
cator comm

e call MPI Barrier(comm); if fails:

e revoke it via
MPI Comm revoke (comm)
and create shrunken
communicator via

OMPI Comm shrink(comm, &scomm)

e USE
MPI Group difference(..., &fg)
to make a globally consistent
list of failed processes

AR KN 4 4 2



ANU/Sandia: Sparse PDE

SNL May 2014 Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver 12

12 Results: Scalability RC=Replication/resampling
AC=Alternate recombination

CR=Checkpoint/Restart

e results on OPL cluster, max.
resolution of 213

e in terms of absolute time,
CR is always more longer
(however, uses fewer pro-
cesses)

e RC and AC also show best
scalability

e plots for 2 failures erratic
due to high overheads in
version of ULFM MPI

normalized efficiency (%)

0O 50 100 150 200 250 300 350 400

number of cores

OPL cluster node: 2x6 cores Xeon5670, QDR IB _

dd4 <) > )
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ANU/Sandia: GENE application

13 Fault Recovery of a Real Application - GENE

e GENE: Gyrokinetic Electromag-
netic Numerical Experiment

e plasma microturbulence code

e multidimensional solver of
Vlasov equation

e fixed grid in five-dimensional
phase space (x|, ., z,,v|,v1)

e computes gyroradius-scale fluctuations and transport coefficients

e these fields are the main output of GENE
e hybrid MPI/OpenMP parallelization — high scalability to 2K cores

cores| t,| .| Aty tq times: ¢, for GENE instance
491489 3.4 1.0 107.6| t.forcomb. alg.

98/36.8| 3.8/ 7.4 653 At;extra for one failure
196/63.2/11.5/19.9 98.7 | t. for full-grid GENE instance




AIST: Runtime System

Master process ™\ Falanx Runtime Traditional approach: C%Tepix l;?gci]ngs
) < Application quired.
Ilmtlahﬂl e To implement fault resilience:
_>¢ A (1) Design application as task workflow
| Generate tasksJ —> Task 1R (2) Schedule tasks on available resources
over workers Im.}\./[ff“ ‘ (3) Protect intermediate data from failure

Process results | < ]ﬂ d

’ I Notify results Task ni Q ;

L y in MPI Low-level functions for failure mitigation of ULFM-MPI

Figure 1: A schematic structure of a Falanx appli-
cation.

« Falanx dataflow runtime

« Advanced Master-worker with
parallel (MPI) worker jobs

 All complexity of MPI (and
ULFM) masked inside the
runtime ©

Can focus on the
application logic!

Falanx application:

Application

(1) Design application as task workflow

e

Middleware

Resource Management

(2) Schedule tasks on available
resources

Durable Data Store

(3) Protect intermediate data
from failure

= ~
= =
Low-level functions for failure mitigation by ULFM-MPI

Figure 2: Implementation of fault resilience with
and without Falanx.

Credits: Ikigamo et al. (AIST)



UAB: transactional model

communication initialization;

\f restarted then « Amin Hassani and Anthony Skjellum
| load data from last checkpoint (optional); presented this idea 1 year ago
end : :
repeat  Amin has implemented the core
while more_work_to_do do concepts of FA-MPI on top of ULFM
MPI_TryBlock_start(); MPI
computation, communication and/or 1/O;
wait for operations to finish; » Provides a higher level abstraction
inject local errors;
MPI TryBlock finish(); than ULFM (but more targeted to a
if failure happened then particular programming style)
isolate and mitigate the failure;
if recovery_needed then break;
end
periodically checkpoint;
end

if recovery_needed then
| do recovery procedure;
end

until more_work_to_do or restart_needed;

Algorithm 1: A basic application using FA-MPI




Spawning replacement ranks 1/2

int MPIX_Comm_replace(MPI_Comm comm, MPI_Comm *newcomm) {
MPI_Comm shrinked, spawned, merged;
int rc, flag, flagr, nc, ns;

redo:
MPI_Comm_shrink(comm, &shrinked);
MPI_Comm_size(comm, &nc); MPI_Comm_size(shrinked, &ns);
rc = MPI_Comm_spawn(.., nc-ns, .., 0, shrinked, &spawned, ..);
flag = MPI_SUCCESS==rc;
MPI_Comm_agree(shrinked, &flag);
if( !flag ) {
if (MPI_SUCCESS == rc) MPI_Comm_free(&spawned) ;
MPI_Comm_free(&shrinked) ;
goto redo;
+
rc = MPI_Intercomm_merge(spawned, 0, &merged);
flagr = flag = MPI_SUCCESS==rc;
MPI_Comm_agree(shrinked, &flag);
MPI_Comm_agree(spawned, &flagr);
if( !flag || !flagr ) {
if (MPI_SUCCESS == rc) MPI_Comm_free(&merged);
MPI_Comm_free(&spawned) ;
MPI_Comm_free(&shrinked) ;
goto redo;



Spawning replacement ranks 2/2

int MPIX_Comm_replace(MPI_Comm comm, MPI_Comm *newcomm) {

/* merged contains a replacement for comm, ranks are not ordered properly */
int c_rank, s_rank;
MPI_Comm_rank(comm, &c_rank);
MPI_Comm_rank(shrinked, &s_rank);
if( © == s_rank ) {
MPI_Comm_grp c_grp, s_grp, f_grp; int nf;
MPI_Comm_group(comm, &c_grp); MPI_Comm_group(shrinked, s_grp);
MPI_Group_difference(c_grp, s_grp, &f_grp);
MPI_Group_size(f_grp, &nf);
for(int r_rank=0; r_rank<nf; r_rank++) {
int f_rank;
MPI_Group_translate_ranks(f_grp, 1, &r_rank, c_grp, f_rank);
MPI_Send(&f_rank, 1, MPI_INT, r_rank, 0, spawned);
}
}
rc = MPI_Comm_split(merged, 0, c_rank, newcomm) ;
flag = (MPI_SUCCESS==rc);
MPI_Comm_agree(merged, &flag);
if( !flag ) { goto redo; } // (removed the Free clutter here)




Example: in-memory C/R

int checkpoint_restart(MPI_Comm *comm) {
int rc, flag;
checkpoint_in_memory(); // store a local copy of my checkpoint

rc

checkpoint_to(*comm, (myrank+1)%np); //store a copy on myrank+1l

flag = (MPI_SUCCESS==rc); MPI_Comm_agree(*comm, &flag);
if( !'flag ) { // if checkpoint fails, we need restart!

redo:

MPI_Comm newcomm; int f_rank; int nf;
MPI_Group c_grp, n_grp, f_grp;

MPIX_Comm_replace(*comm, &newcomm) ;
MPI_Comm_group(*comm, &c_grp); MPI_Comm_group(newgroup, &n_grp);
MPI_Comm_difference(c_grp, n_grp, &f_grp);
MPI_Group_size(f_grp, &nf);
for(int i=0; i<nf; i++) {

MPI_Group_translate_ranks(f_grp, 1, &i, c_grp, &f_rank);

if( (myrank+np-1)%np == f_rank ) {

serve_checkpoint_to(newcomm, f_rank);

}
}
MPI_Group_free(&n_grp); MPI_Group_free(&c_grp); MPI_Group_free(&f_grp);
rc = MPI_Barrier (newcomm);
flag=(MPI_SUCCESS==rc); MPI_Comm_agree(*comm, &flag);
if( !flag ) goto redo; // again, all free clutter not shown
restart_from_memory(); // rollback from local memory
MPI_Comm_free(comm) ;
*comm = newcomm;



Application Recovery Patterns

Coordinated Checkpoint/Restart, Automatic, Naturally Fault Tolerant Applications, Master-Worker,
Compiler Assisted, User-driven Checkpointing, etc. Domain Decomposition, etc.
In-place restart (i.e., without disposing of non-failed processes) Application continues a simple communication pattern,
accelerates recovery, permits in-memory checkpoint ignoring failures
........................ TIME e
Master
Worker0 ¥
Worker1
—>' Worker2

ULFM MPI

Specification

Uncoordinated Checkpoint/Restart,
Transactional FT, Migration,
Replication, etc.

ULFM makes these approaches portable across MPI implementations ULFM allows for the deployment == === - — = = = — = >
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Future directions

e Transient failures

« Implementations can work around transient failures by “promoting” them to
fail-stop

« This proposal does not talk about them (on purpose, to leave room for future
directions)

* KISS for C/R

« This proposal supports C/R and restart with same proc number
* It is however not necessarily easy to write with a deep call stack

« We would like to explore addition of “revoke_all” that destroys all
communicators (and possibly more of the MPI objects), to automate “wiping
out” MPI state and reconstruct only MPI_COMM_WORLD

« Conditional init of FT, introspection

« Turn on FT support only if MPI init has special parameters
« Dependent on fate of external tickets (MPL_Init_with_info)




Thank you

To know more...
http://fault-tolerance.org/ulfm/
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More performance:
synthetic benchmarks

1-byte Latency (microseconds) (cache hot)

Interconnect Vanilla|Std. Dev.|| Enabled|Std. Dev. || Difference
Shared Memory|| 0.8008| 0.0093|| 0.8016] 0.0161 0.0008
TCP 10.2564| 0.0946|| 10.2776| 0.1065 0.0212
OpenlB 4.9637| 0.0018|| 4.9650| 0.0022 0.0013
Bandwidth (Mbps) (cache hot)
Interconnect Vanilla|Std. Dev.|| Enabled|Std. Deuv. || Difference
Shared Memory|[10,625.92 23.46(|10,602.68 30.73 -23.24
TCP 6,311.38 14.42|| 6,302.75 10.72 -8.63
OpenlB 9,688.85 3.29|| 9,689.13 3.77 0.28
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Failure Notification

 Notification of failures is local only

« New error MPI_ERR_PROC_FAILED Raised when a communication with a
targeted process fails

 [n an operation (collective), some process may
succeed while other raise an error

» Bcast might succeed for the top of the tree, but fail for some subtree rooted
on a failed process

« ANY_SOURCE must raise an exception

» the dead could be the expected sender
« Raise error MPI_ERR_PROC_FAILED_PENDING, preserve matching order
« The application can complete the recv later (MPI_COMM_FAILURE_ACK())

« Exceptions indicate an operation failed

« To know what process failed, apps call MPI_COMM_FAILURE_ACK(),
MPI_COMM_FAILURE_GET_ACKED()




App using notification only

Recv (ANY)
Detected W1

Mm:v:i N\ 3 /7\/ N /\

Error notifications do not break MPI

» App can continue to communicate on the communicator

* More errors may be raised if the op cannot complete (typically, most collective
ops are expected to fail), but p2p between non-failed processes works

In this Master-Worker example, we can continue
W/0 recovery!

« Master sees a worker failed
« Resubmit the lost work unit onto another worker
* Quietly continue




App using propagation only

Recv(P1): failure
& & ] P2 calls Revoke

WETREN

» Application does only p2p communications

» P1 fails, P2 raises an error and wants to change comm
pattern to do application recovery

« but P3..Pn are stuck in their posted recv
P2 unlocks them with Revoke

« P3..Pn join P2 in the new recovery p2p communication
pattern

icL>or




Error Recovery

P1

P2
P3

Pn

» Restores full communication capability (all
collective ops, etc).

« MPI_COMM_SHRINK(comm, newcomm)

« Creates a new communicator excluding failed processes
* New failures are absorbed during the operation
« The communicator can be restored to full size with MPI_COMM_SPAWN




Error Agreement

« When in need to decide if there is a failure and
If the condition is recoverable (collectively)
« MPI_COMM_AGREE(comm, flag)
« Fault tolerant agreement over boolean flag

« Unexpected failures (not acknowledged before the call)
raise MPI_ERR_PROC_FAILED

* The flag can be used to compute a user condition, even
when there are failures in comm

» Can be used as a global failure detector




